
GENERATING SYSTEM(U) NAVARL POSTGRADUATE SCHOOL MONTEREY
CA T J NEWTON JUN 85

UNCLSSIFIEO
F/G 92 NL

EE-hhE9h hh71
m, hhhhhE-hhhhImhhhohEohEohhI
smmhEmhEshmhhh

EE~EEEEEEE

1.0 m 1-8 1.

1.25 11. 01.6

M'CeOCOPY RESOLUTION TEST CHART
SlATIOPIAA S4JRAU or sTMio*OS -1943 -A

4L. ION %A p~

NAVAL POSTGRADUATE SCHOOL
Monterey, California

0)O
T

TL ES

UTI

PERFORMANCE EVALUATION OF THE JRS
AUTOMATIC MICROCODE GENERATING SYSTEM

by

*Terry J. Newton
C1 Z

* 0 June 1985

.

Thesis Advisor: Alan A. Ross
CI Approved for public release; distribution is unlimited 4

t3~1003 105
.*~ ~ ~ ~ 8 10 .. .- 4 4

*~~~~~~.7 4t** * 4. .*-**~~4* 124*

SECURITY CLASIFICAION OF THIS PAGE ftu 8. mD e _ _-__ _,_

REPORT DOCUMENTATION PAGE P______'__co_.92FnORI¢ COMPLlZTMIG FORMd.-,;

I. REPORT NUMER 2. GOVT ACCERUION NO: 1. RECIPIENT"S CATALOG NUMBER ..

4. TITLE (mg &abdoe) S 5. TYPE OF REPORT & PERIOD COVERED

Performance Evaluation of the JRS Master's Thesis
Automatic Micrcode Generating System June 1985

S. PERPORMING ORG. REPORT NUMBER

7. AUTHORe) S. CONTRACT OR GRANT NUMENR(4,)

Terry J. Newton

9. PERFORMING ORGANIZATION NAME ANO ADGRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Naval Postgraduate School AREA WORK UNIT NUMB.ER
Monterey, CA 93943

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1985
Monterey, CA 93943 1s. NUMBER OF PAGES

120
14. MONITORING AGENCY NAME A ADDRESS(IIdlffernt horm Contro*llg! Offie) IS. SECURITY CLASS. (of this rop.,f)

UNCLASSIFIED

IS. DECLASSI FICATION/ DOWNGRADING ,
SCHEDULE

1S. OISTRIBUTION STATEMENT (of thia Repor)

Approved for public release; distribution is unlimited

17. OISTRISUTION STATEMENT (of the abstrac entered in Block 20. It differemnt arn Rapot) ..

IS. SUPPLEMENTARY NOTES .'"-""-

'. .-

19. KEY WORDS (Continue on reverse side If neceoarya end identify by block nsimber)

microprogramming, microcode, computer performance evaluation,
automatic microcode generation, microoperations, microinstruction,
machine dependence, microcode compaction, code optimization,
benchmark

20. ABSTRACT (Continue on reerae aide It noceoaer, md Identlfy " block numbor

The purpose of this thesis was to evaluate the performance of
microcode automatically generated from a high level language.
The performance of the generated microcode was compared to the
performance of Fortran code on the VAX 11/780 to see if any in-
crease in throughput could be attained by using the microcoded
version.
The factors affecting the automatic generation of microcode:
compaction, optimization, cost, and machine (Continued)

DO I 1473 EDITION Ol I NOV .S 1S OBSOLETE

S'N 0102- LF- 04- 660! l" SECURITY CLASSIFICATION OF THIS PAGE (When Dta E-td)

%*?. * - *= '.* .- . .--,,,- .*.* .-..-. ,--..:.* ..% -..-,.. .*..- *: ... :

UUWTY CLAIMFICATION OF THIS PAGI 11 3e hIm -

ABSTRACT (Continued)

independence are discussed. This is followed by a definition
of the testing areas, description of the tests, and a description
of the performance evaluation methods.
The tests showed that the automatically generated microcode does -

not always out perform Fortran. In general, the Fortran code
was better for mathematical calculations while the automatically
generated microcode was better for bit manipulation and sorting/
searching type applications.

4p

1 - L

2 CSTD

i~ii ::i~/

-.- .- .* *.o*.

,.• ,.:...

gq,

61

Approved for public releasel distribution is unlimited.

Performance Evaluation of the JRS
Automatic Microcode Generating System

by

Terry J. Netonw
Captain, United States Air Force

B.9., United States Air Force Academy, 1976 [

Submitted in partial fulfillment of the
requirement% for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
/

NAiVAL POSTGRADUATE SCHOOL

June 1985 ~'

Author: ___

Terry J. Newton

Approved by: _ ."-'
Ian is visor

[' o3 a J nd Reader

c . MacLennan, Chairman
Department of Computer Science

I Kneale T. Marshall, an InformatiOn
and Policy Sciu-c

I3

* kj, #.

ABSTRACT

-'The pur pose of this thesis was to evaluate the

- performance of microcode automatical y generated from a

high level language. The performance of the generated

microcode was compared to the performance of Fortran code

on the VAX 11/780 to see If any increase in throughput

could be attained by using the microcoded version.

The factors affecting the automatic generation of

microcode: compaction, optimization, cost, and machine

independence are discussed. This is followed *by a

definition of the testing areas, description of the tests,

and a description of the performance evaluation methods.

The tests showed that the automati ca1 y generated

microcode does not always out perform Fortran. In general,

the Fortran code was better for mathematical calculations

while the automatically generated microcode was better for

bit manipulation and sorting/searching type applications.

4

• "'" - : i
-. -.- :-.)

. % .

4.''p

% "0%"a''p
• % • " •-' .

TABLE OF CONTENTS

I. INTRODUCTION - 9

it. - -K-R--- -- 17

A. HIGH LEVEL LANGUAGES AND MIU i-.i.lMlN8 N - 18

B. MACHINE INDEPENDENE -- 20

C. COMPATION AND OPTIMIZATION --------- 23

D. AMOS LIMITATION1 --------------- 32

E. PERFORMANCE EVALUATION METHODOLOGY ------ 36

F. BACKGROUND SYNOPSIS - ------------ 37

III. PROGRAN GENERATION ---------------- 39

IV. TESTING--- - ----------------- 47

A. TIMING MECHANISM- - - ------------- 47

B. LANGUAGE FEATURES AND THE EFFECT ON TIMING - 50

V. PERFORMANCE COMPAR ISON -------------- 56

A. RAN DATA ANALYSIS- - ----------- 56

B. EFFECTS OF LANGUAGE FEATURES ON THE TESTS - 58

C. COMPARISON OF TEST RESULTS - - - ------- 62

1. Integer Mathematics ----------- 63

2. Floating Point Mathematics--------- 65

3. Sorting and Searching ---------- 66

4. Bit Manipulations ------------ 69

D. TEST ERROR ANALYSIS ------------- 70

VI. CONCLUSIONS ------------------- 73

A. CONCLUSIONS FROM THE DATA ANALYSIS ------ 74

5

B. FUTURE RESEARCH POSSIILITIES - 77

LIST OF REFERE. NCES- 8O

APPENDIX A: INTEGER MATHEMATICS ALGORITHMS 82

-APPENDIX 3: FLOATING POINT MATHEMATICS ALGORITHMS- 90

APPENDIX C: SORTINS/EARCHINS ALGORITHMS- ------- 97

APPENDIX D: BIT MANIPtLATION ALGORITHMS- -------- 106

APPENDIX E: SAMPLE HARNESS SETUP ----------- 113

INITIAL DISTRIBUTION LIST --------------- 119

,

4. - . . *. * *•

LIST OF TABLES

3-1 Specific Tests - 42

5-1 TestRemults - 57

5-2 Table of Tests In Appendices - 63

7

p',

,1 Thanks are due to Mr. Bob Iheraga far his assistance in

explaining the VAX 11/780 microcode and micromachine. He

also performed the compaction of the HLL microcode.

Without his expertise and assistance, the compaction would

not have been accomplished and that part of the testing

would have been lost.

Lt. Col. Ross was very supportive during the entire

project. His guidance and support, along with his probing

questions, were very important in finishing the paper.

Most importantly, I thank my family, Karen, Chad, and

Lisa, for their support and understanding during the period

while I was writing this paper.

.%S

d%

°°

1. INTROOUCTION

One of the problems currently being studied by the

Naval Research Laboratory (NRL) involves the processing of

frequent and complex messages from satellites. The

processing of these messages requires a high percentage of

bit manipulations which uses a large amount of central

processing unit (CPU) time. The currently available

computers do not have sufficient capability to perform this

processing in a timely manner. There are several options

available to the NRL for improving the situation. One

option is the use of a very fast computer, however, the

cost of such a computer is very high. The purpose of this

project is to evaluate another less costly option using an

automatic microcode generating system (AMES).

JRS Research Laboratories Inc. has developed an AMeS

which generates microcode for the writeable control store

(WCS) on the VAX 11/780. The JRS AMeS was developed to

provide a low cost technique for algorithm implementation

which provides the performance of microcode, yet does not

require detailed machine level microprogramming. The JRS

AMeS is a software package that generates microcode from a

high level language (HLL),m thereby eliminating the need for

the programmer to be concerned with the details of

microcode. The user, therefore, need not understand

9

S- ,

-91

microcode programming and may apply the principles of

software engineering through the use of an HLL. Figure 1-1

CRef. 1: p. 5593 shows the steps involved in generating

microcode from the HLL using the AMBS. It is important to

note where the AMOS is machine independent and where it is

machine dependent. This will be important in later

discussions of the system.

Since the target machine of the JRS AMBS, the VAX

11/79 is a horizontally microprogrammd procssor, it is

capable of executing a number of operations simultaneously.

This is the key ingredient to improving the speed and

efficiency of the executable code because several

microoperations may be executed concurrently. CRef. 1: pp.

558-5593 By applying the JRS AMeS to the data manipulation

requirements of the satellite communication problem, a

reduction in required CPU time should be achieved.

Since the current method used by NRL for implementing

the algorithms is to write them in Fortran, this project

will compare the execution speed attained using the AMeS to

the execution speed attained using Fortran code. The

results of this comparison will provide an understanding of

the type of algorithms that are suitable for implementation

via the JRS AMBS, the performance improvements to these

algorithms, and the costs of using this implementation

technique. This study is based on two aspects of computer

science: microprogramming and computer performance

10

.°

INDEPENDENTI

HLL COMPILER

MICROCODE GENERATOR

Figur 1-1:N SOURC Opertio

DEFNITON ICRPRORAMRUNTIM

pR IERUIE

evaluation. B4ore the study can be described, these two

areas must be defined.

Milkes defined microprogramming as a method of

implementing the control function of a computer. ERef. 2:

p. 59] The major advantages of microprogramming are:

1) Low Cost: Microprogramming allows large instruction

/" sets to be implemented at a low cost because of the

simple design process. Developing a hardwired design of

an equivalent system would be very expensi ve.

2) Flexibility: With microprogramming, it is possible to

change the instruction set or to introduce a new set

after implementation. This may allow a computer to be

useful for many more years than originally planned.

3) Simplicity: Microprogramming allows for simpler

development due to the decrease in internal circuitry.

This simpler design facilitates maintenance and reduces

the problems associated with upgrading the design in the

field.

4) Speed: Although microprogramming is slower than some

hardwired designs, a microprogrammed implementation will

run faster on most algorithms than an equivalent machine

language implementation. This is due to the machine

language fetch and decode overhead. rRef. 3: p. 53

A major disadvantage of microprogramming is the memory

delay penalty for fetching each microinstruction from the

control store. This fetch penalty can result in slow

12

execution times if not dealt with properly, but the problem

can be made less significant by providing an overlap

between the fetch and the execute portions of

microinstructions. [Ref. 3: p. 53

Since this project is concerned with comparing Fortran

code with microcode, it is important to review the

tradeoffs between using Fortran (or some other HLL) and

microcode. Programming in microcode is very tedious and

complex because the programmer must deal with the details

of the machine. However, it is this complexity of

microcode that can, through proper programming, lead to a

speed advantage. On the other hand, Fortran and similar

HLLs are not nearly as complex because the details of the

"chine are handled by the compiler. The slower execution

speed for HLL's results from both the generalization

required in the code generation portion of the compiler and

the instruction fetch decode penalty described in the

explanation of the microcode speed advantage.

Microprogramming, in Its present state# may be used to

provide efficient implementations of the control function

on computers. While not providing the fastest execution

speed possible, microcoding will provide a given level of

throughput at a cheaper price than is otherwise possible.

In addition, the speed of microcode has recently improved

because of the development of fast, inexpensive

semiconductor memories. These are the two main reasons to

13

...

suggest that the ANS can give a performance advantage over

Fortran source code.

Since this study involves the evaluation of the

performance of microcode, It Is important to review the

relevant performance evaluation techniques, mthods, and

problem. The performance evaluation in this study is a

comparison between different implementations of the same

algorithm. The classic application of performance

evaluations is on operating systems to determine how to

improve the system. To achieve the comparison, the

evaluators must define a benchmark which represents the

type of workload that occurs on that system. Defining this

workload properly and accurately is very important or the

results will be invalid. In the case of this study, a

major consideration is the definition of the algorithms to

be implemented and compared.

One option when picking the algorithm is to choose a

very specific application area and test only within that

area. Another option is to attempt to test the entire

realm of possible applications which would take many

different algorithms. In Chapter Three, the application

areas of interest will be defined and the subsets of these

areas to be tested will be identified. The tests will be

as comprehensive as possible and will cover as large an

area as possible, however, exhaustive testing of the entire

realm of applications is not possible.

14

• . ° o ,

The evaluation technique will consist of implementing

the algorithm in both Fortran and in the AMOS HLL. Both

the Fortran and the HLL codes will be executed, timed, and

the execution times will be compared to determine the

change in performance with the HLL microcode version.

Since the algorithms are grouped according to application,

it is possible to determine which applications have

increased throughput from use of the AMOS.

Several contributing factors must be considered during

this performance evaluation. The effect of using an HLL

instead of assembly language or direct microprogramming to

implement the microcode version is significant because of

the costs involved in using each method. Similar costs are

associated with all HLLs, be it the JRS HLL and its

associated compiler or Fortran and its resultant

translation. Likewise looking at the more primitive

languages of assembly code and microcode, the costs of

programming in both languages are very similar. However,

not so obvious is the tradeoff involved in choosing one

type of language (high level versus low level) over

another. The specific compilation techniques may also have

an effect on the efficiency of the product and must be

considered. The microcode compaction method used will

certainly affect how fast the microcode executes. A

performance evaluation must analyze many factors, both

individually and combined, to produce valid results.

15

I.
I-

I

Chapter Two is a discussion of the issues of AMOS

design, compiler technique, code generation, and code

optimization. The purpose of this discussion is to assess

the effect each item has on the entire system so that

during the evaluation of the AMOS these factors can be

properly analyzed.

Chapter Three describes how each program was generated.

Because the AMOS is being evaluated for all applications,

this chapter defines the basic areas that are tested in the

project. After the basic areas are defined, the specific

tests developed to cover theme areas are explained and the

information to be gained from each test is outlined.

Chapter Four explains the mechanics of the testing

including the timing mechanism and the effects of language

features on the tests. An analysis of possible sources of

errors is also included here to explain the validity of the

results.

Chapter Five compares the data from the tests and

analyzes the results. A step-by-step explanation of the

testing is enumerated to insure a proper understanding of

why certain tests were accomplished. The last chapter

summarizes the results and makes deductions and

recommendations for further research in this area.

16

11Z. BP=6ROtJND

With the many advantages of microprogramed computers

there is no apparent reason why microprogramming should not

be used for most applications. Low cost, fast execution

time, and simplicity of design sound like exactly what a

' computer designer desires. There is, however, the problem

of developing the microprogram. (commonly called firmware)

for the computer in a reasonable amount of time and with

reasonable cost. Developing firmaware has been a costly,

error prone, and slow process because it has been done

manually and because of the details that must be handled by

the mi croprogrammer.

The obvious answer is to eliminate the use of low level

languages and place the microprogrammer into the world of

high level languages. That is the intent of the AMGS.

However, along with the advantages of an HLL come problems

and considerations that cannot be ignored. This chapter

will explore the many considerations of the AIGS and

discuss their impact on the JRS AMBS. The following topics

are considered to be the most relevant and will be

discussed in depth in this chapter: 1) High Level Languages

and Microprogramming, 2) Machine Independence, 3)

* Compaction and Optimization, 4) JRS AMOS Limitations, and

5) Performance Evaluation Methodology.

17

' % • • .- • .. .- .

A. HIGH LEVEL LANBUA9ES AND MIU ROBRAMI: ING

Higher level languages are designed to simplify

programming by isolating the programmer from the details of

the machine and placing him at a higher level of

abstraction. An AMOS removes the programmer from the

details of microprogramming and allows the programmer to

write the code in an HLL. Writing a program in an HLL

takes much less time than writing the same program in

microcode because the programmer must deal with fewer

detai.ls. There are many studies that have shown the

advantages of using HLLs instead of assemblycode. One such

study clais that a programmer produces a set number of

lines of code per day, independent of the type of code.

Since one line of HLL code will produce many lines of

microcode, it is logical to opt for the HLL if all other

factors are equal. ERef. 4: p. 1453

However, all other factors are not equal. Since the

HLL used for generating the microcode is a special purpose

language, any program written to use this system must be

translated from another language before it can be used. In

this particular case, the time required to program in the

HLL provided by JRS must be considered. Of course the time

required to translate the algorithm to the HLL should be

much less than would be required to translate the algorithm

into assembly language code or into microcode. Since the

JRS HLL is a language heavily influenced by the block

P.

structure of Algol, Fortran, and Pascals any algorithm

written in a block structured language should be easy to

translate to the JRS HLL.

Software engineering literature provides many reasons

for using HLLs. One such reason is that HLLs provide

security not possible using microcode or assemblycode.

Forced typing of variables is one example of the security

provided by HLLs. High level languages also provide

-* features such as subprograms which are an advantage because

they assist the user in subdividing the program into

logical units. These logical units make the problem easier

to understand and handle.

The chief advantage of an HLL. is the ease of program

maintenance which results in lower life cycle costs for a

program. Program changes can be very expensive if the

programmer must read and understand low level code, with or

without good documentation. Through use of an HLL, program

changes can be made much more quickly and simply, with

reduced costs.

The advantages of HLLs are all 'nice' for the

programmer, but it is important to consider the

side-effects of HLL usage. If the advantages of an HLL

detract from the advantages of microprogramming (i.e.-

simplicity, costs flexibility, speed) then using the AMOS

may not be justified. On the other hand, if the AMOS

eliminates or minimizes other problems of microcode, then

19

F.7.7.7- 7 . 7 -7 75 -7-7 -. 10J

Ii the AMS will become even more desirable. One such

undesirable property of microcode Is its machine

dependence. In the next section we will look at the effect

%.of using an HLL on the machine dependence of the resulting

amicrocode.

B. MACHINE INDEPENDENCE

Machine independence is a major concern during the

development of an AMOS because of the desire to make

firmware portable. The AMOS is a tool used to help achieve

the goals of machine independence and portability. Machine

independence and portability are desirable characteristics

for any computer language because if the code may be used

on more than one computer, the overall firmware development

costs will be lower. If every different target machine

must have its own version of the algorithm written

specifically for it, then the cost of program development

will be a function of the number of target machines. A

much more desirable method is to write one program that may

be used on every machine resulting in only one program

being developed.

A machine dependent language is "a language in which

all operations and data elements defined in the language

have a direct mapping to a resource of the target machine."

CRef. 5: p. 1943 The actual microcode is such a language

because it specifically addresses the available registers

20
.

.

of a machine. To remain machine independent and avoid the

problems of machino dependence, a language must avoid the

detail% of the target machine and remain general enough to

not become tied to any specific instruction set. This can

be accomplished by defining an overall class of machines

and then writing the language to fit into that definition.

Such a definition includes such items as the minimum number

of registers, the minimum stack size, and other hardware

related items. Capitalizing on the similarities and

avoiding the differences of the machines in the class

simplifies this task. Any item that is not common to all

machines in the class must not be included in the

definition because it can not be supported by all machines

in the class.

The AMS supports machine independence and portability

of microcode by providing an intermediate language and an

HLL that avoid% the direct mapping to the machine

resources. Since these two components of the AMBS are

machine independent, a user may write a program in the AMGS

HLL and then use the code on different target machines.

The major problem is making the transition from the machine

independent intermediate language to the target machine's

microcode. To achieve this, each machine requires a

separate code generator to translate the intermediate

,. language to the microcode level plus a compactor to compact

. the resulting microcode. This is not a trivial step and

21

..

there is currently considerable research being conducted on

*icroarchitecture description techniques that will assist

in mking this step easier. Beiser has introduced a

description methodology that covers four basic areas:

1) Microinstruction description: includes the format of

the microinstructions fields used in the

microinstruction, and possible values in each field.

2) Element descriptions: describes and names elements

of the machine hardware including mamory, registers, etc.

3) Hicrooperation usage rules: a set of rules for

constructing valid microoperations.

4) Microengine behavioral rules: specifies interactions

between the microoperations. ERef. 6: pp. 517 - 5213

By using this technique it is possible to describe the

target machine in a standardized format so that the writing

of the machine dependent code generator is much easier.

Of course the description methodology does not

eliminate the problem. The main purpose of a description

methodology is to reduce the work required to port the

language to another machine by maximizing the common

features of the different machine dependent languages.

This may eliminate desirable machine dependent features but

it does permit a 'nearly machine independent' language.

The assumption is if you cannot be totally independent then

be as independent as possible. [Ref. 5: p. 1953

22

• -% . . , . , .

True machine independence has not been achieved in this

AMOS and probably will not be achieved in the near future,

however the microarchitecture description methodology is an

attempt at reducing the portability problem. By providing

a systematic description of microarchitectures, the

description methodology reduces the amount of work required

to move a system to another comparable machine. The AM6S

is providing a step toward an ultimate goal of machine

independence that may never be achieved. However, the AMOS

has helped to define and simplify some of the steps

involved in making microcode generation less machine

dependent.

C. COMPACTION AND OPTIMIZATION

Before reviewing the current compaction techniques it

is important to understand the difference between

compaction and optimization. Microcode compaction will

reduce the space required to store a program but does not

guarantee a reduction in the speed of execution.

Optimization, on the other hand, results in a reduction in

execution speed but does not guarantee that any code

compaction will occur. Sometimes execution time will

decrease when the code is compacted, but the reduction of

execution time is not guaranteed, in fact execution time

can in some cases increase. The only conclusion that can

be drawn is that successful compaction guarantees fewer

23

* .** ::Pj..Q:&-Y?24S:o'c- §t..:~t..-1

total instructions and may lead to faster or possibly

slower execution speed.

Most HLL compilers do include an optimization step,

however, the present version of the JRS HLL compiler does

not. There are two reasons for this. One reason is that

excessive optimizations prior to microcode generation can

make error correction very difficult because of the

movement of the microoperations. Secondly, since this was

the first production version of an AMOS, some of the more

difficult problems were not handled. Optimizing the

compiler without excessively affecting error correction is

one of the more difficult problems. The AMBS does as a

whole include a number of optimization steps designed to

produce more efficient microprograms. An example of such a

step is the use of registers to hold array offset addresses

to help reduce memory fetch delay. Even though none of the

common compiler optimization techniques are used in this

system, it is important to discuss them here to understand

the effect they could have on microcode compaction.

ries gives a good explanation of the four main

compiler optimization techniques that are applicable to

almost any algebraic programming language such as Fortran,

Pascal, Algol, PL/I, etc. The four methods are:

1) Folding: for any operator whose operands are known at

compile time, perform the applicable operation at compile

time rather than at execution time.

24

"." " ' " ° ' a * ' ".*..,.. " ° .' ° .. '.
.

'°
o

" "" " • •" " ,"-" " " . " . . .-° . "°
o

-. - .. "•oo~°"

2) Eliminating redundant operations: mainly factoring out

common subexpressions.

3) Moving operations out of loops if their operands do

not change within the loop.

4) Reducing the number of multiplications in loops:

effectively changing the multiplications to additions.

[Ref. 7: pp. 376 - 377]

A system may use these techniques to attain whatever level

of optimization is desired, however there is a tradeoff

between the level of optimization and the time required to

perform the compilation. Also as mentioned above,

extensive optimization will result in radically altering

the sequence of operations and therefore make debugging

very difficult. ERef. 7: p. 376]

Even though optimization is important, there has been

very little work done on optimization of microcode. Almost

all of the work done on microcode has been in the field of

compaction because optimization of microcode is very

difficult to do systematically and is not well understood.

Most microcode compaction research has been justified by

the assumption that execution time will decrease when the

code is compacted. It is important to keep this assumption

in mind when discussing compaction because the results of

the compaction are not guaranteed to reduce execution time

and will certainly not optimally reduce execution time.

However, compaction is the only automated method for

25

[" .' '" . ' ° .€''.,.2 "" ". '.''", "" -,2 , "" " -%°"'.':"'' , .," ".". • . " €,• . ' '

improving microcode that is currently available for

practical use.

It is important to remember the assumption that the

target machine will be horizontally microprogrammable,

meaning that morm than one operation may be executed during

any microinstruction. If the target machine is not

horizontally microprogammable, then only one microoperation

may occur during any microinstruction (or machine cycle)

" and compaction is not possible. There are two classes of

microcode compaction for horizontal 1 y microprogrammable

computers, local and global, and a discussion of the

compaction techniques from both classes will follow. JRS

does not do any code compaction in this version of the

AMOS. However, by reviewing the many methods of compaction

available it will be evident which methods are the most

promising for future improvements.

Local compaction of microcode is concerned with the

reduction of the number of microinstructions in a

straight-line code (SLC) segment of a microprogram. An SLC

segment is any sequence of microinstructions that begins

either at the start of the program or after a branch

statement and ends either at the end of the program or at a

branch statement. Only one entrance and one exit is

allowed in any SLC segment. Local compaction is simply an

attempt at reducing the number of microinstructions in each

SLC segment by combining instructions or eliminating

26

duplicated instructions. The most promising and popular

versions are first-cme first-serve, critical path, branch

and bound, and list scheduling.

First-come first-serve is probably the simplest form of

local compaction possible. Each microoperation is

considered only once, in source code orderm and in the SLC

segment that it exists. Each microoperation is moved as

far forward in its segment as possible. If it can be

combined with a previous operation without causing a

conflict, then it will be combined. Once a microoperation

has been checked and combined or not combined, it will

never be considered again. This results in fast compaction

but the resulting microcode is not optimally compacted.

Ref. 8: p. 4153

Critical path algorithms compact microcode in each SLC

segment by identifying microoperations "that cannot be

delayed without increasing the number of microinstructions

needed for the microprogram." Ref. 8: p. 4153 This is

accomplished by first identifying the longest paths in the

data dependency graph. Each of the longest paths is called

a critical path and shortening the path will result in a

more compact program. Each microoperation in each critical

path is checked to see it if can be moved forward and

combined with another microoperation. If it can be moved

forward, the critical path will be shortened and the result

is a more compact program. If any microoperation in any of

27

the critical paths is delayed (not forwarded as much as

possible), then the trailing microoperations will be

delayed, which will result in more microinstructions than

are actually needed and less compact microcode. CRef. 8: p.

4223 Once again the results are not optimal and the time

required to do the compaction is a polynomial function of

the number of microoperations which are considered in each

SLC segment.

Branch and bound algorithms can guarantee optimality in

storage space required for the microprogram. Remember that

this says nothing about the execution time of the program.

The method depends upon searching a tree structure

exhaustively, looking for the optimal ordering. This

method may produce optimal compaction, but the time

required is an exponential function of the number of

microoperations in the microprogram, making the method very

expensive. There are variations to the branch and bound

algorithms that are not so expensive. One such variation

involves pruning the tree structure prior to searching the

tree. This pruning reduces the cost of the algorithm to a

polynomial function of the number of input microoperations.

However, the reduction in cost also produces less than

optimal microcode. CRef. 8: p. 4243

List scheduling searches through each SLC segment and

attempts to schedule each microoperation at the earliest

possible point within the window of code that is being

28

considered. The size of the window is variable but the

larger the window the longer the time required to do the

job. Also, as the window size Is increased, there is a

diminished return (diminished amount of code compaction)

for each unit increase in window size because of the

increased chance of finding a data dependency. The further

away the compaction is attempted, the greater the chance of

two data items needing the same register, or some other

data dependency. List scheduling is not optimal, but the

cost is as low as first-come first-serve and the results

are better than first-come first-serve.

Of these four local methods, only list scheduling and

first-come first-serve can be done in what is considered a

'reasonable' amount of time and produce acceptable results.

The fact that list scheduling produces better results than

first-come first-serve in general was shown in a study done

by Davidson, et al. ERef. 8: p. 4603 This would justify

the use of list scheduling as the compaction method for the

AMBS if only local compaction methods were available,

however there are global compaction techniques that should

be considered. It is an intuitive notion that global

compaction techniques should provide better compaction

since they look at the entire program and not only at small

SLC segments.

It is true that, in general, global compaction

techniques provide better compaction than local compaction

29

-1. . *. * .. . * * .

techniques yet, in comparison to local compaction

-- hniques, global compaction techniques are very

expensive. Trace scheduling, tree compaction, and

compaction based on a generalized data dependency graph

(ODDO) are the three most promising global compaction

techniques. Trace scheduling identifies the most

frequently traversed path through a section of microcode

and does a local compaction on that path. The process is

repeated on all of the paths through the microprogram until

no further microoperation movement is possible. A data

dependency graph must be constructed for each path analyzed

and any microoperation. that are moved must be documented.

This documentation is done to insure that the moving of

microoperations will have no effect on other loops. The

bookkeeping for trace scheduling is the most expensive

part. In fact in the worst case, the memory required to

run a trace scheduling compactor can grow exponentially.

rRef. 9: p. 4803 Therefore, although trace scheduling does

an excellent job of microcode compaction, the overhead is

too high to justify its use.

Tree compaction is based on trace scheduling. The

advantage of tree compaction over trace scheduling is the

control of the increase in memory size. Tree compaction

divides the microprogram into subsets and applies the trace

scheduling techniques to the subsets individually. This

achieves compaction that is close to the results achieved

30

by trace scheduling yet is not nearly as expensive. This

method may be useful when It is fully researched and

understood, however tree compaction still produces

microcode that is less than optimum and the cost can be

high.

The third global compaction method is based on a global

data dependency graph (ODDS). A ODDS "is capable of

representing in a single chart the data dependency of

microorders not only within a basic block but in different

basic blocks." CRef. 10: p. 9243 Both trace scheduling and

tree compaction use a data dependency graph CDDS) to

represent the data dependency of microorders in the basic

blocks, however a DDG is not capable of representing the

data dependencies beyond the basic block. This is the most

important aspect of global compaction; moving microorders

to adjacent blocks when possible.

Through use of the 8DDS, it is possible to identify

microoperations that 'must' be in a basic block and those

that 'may' be in a basic block. Then, by identifying the

frequency of execution of the separate blocks it is

possible to make intelligent choices about moving

microoperations from block to block or within the same

block. The algorithm costs an amount which "is practically

0(n), where n is the number of microorders contained in a

source microprogram." [Ref. 10: p. 9303 This is a very low

cost and the preliminary results show that the algorithm

31

................ ,-
' ' ".;" "" " "'" ,".'",' ' ' ': , , , , ,L . . .l . .

provides compaction that is within three to five percent of

optimum (handwritten) microcode.

Of the three global compaction methods described, only

the method based on an ODDS is efficient and results in low

costs. Why then did JRS not use this compaction method in

the AMBS? The answer is that during development of the

AMGS, this compaction method was not available. JRS is

currently revising the system to incorporate the GDDG

global compaction technique, which should result in a much

mwe efficient system than was evaluated in this study.

By looking at the two main compaction methods, global

and local, it is evident that global compaction holds the

most promise for efficiency that approaches the optimum.

Once global compaction methods are more thoroughly

researched and developed, they will become the logical

choice if the cost can be controlled. 81obal methods are

the only methods that approximate the handcoded versions.

Local compaction does provide some compaction but does not

in general do as well as handwritten microcode.

D. AMOS LIMITATIONS

The A OS developed by JRS is designed to allow a small

CPU intensive algorithm to be compiled in microcode and

placed in the WCS of the VAX 11/780. When the algorithm is

needed it can be called from a Fortran program. There are

several limitations of the system that are important to

32

remember when considering what applications may be used on

this system. Individually the limitations may seem small

and even unimp tant, howmver, the combined effect of the

limitations may eliminate some of the applications.

First, the WCS only has 1K words of memory for the

microcode. Since the microcode must be loaded into the WCS

before execution due to linkage requirements, paging of the

algorithm into the WCS during execution is not considered

an option. Therefore the user is limited to an algorithm

or collection of algorithms that is no larger than 769

microinstructions because the other 255 instructions are

used for predefined functions. In fact, of the 769

microwords of memory available, about 30 instructions are

already taken up by function entry and exit code that is

required for register initialization and can not be

modified by the user. The exact number of instructions

varies depending upon the microprogram being executed.

Compacting a long algorithm to fit into the limited

space of the WCS may be difficult or even impossible. Once

the user has determined that the algorithm will fit in the

WCS, then he/she must determine the 'hot' spots of the

program (portions of the algorithm that use the most CPU

time), separate those parts of the program from the rest,

code those parts in the JRS HLL, and set up the microcode

procedure call. This may be only a minor inconvenience

but, it is extra effort needed to use the A18S.

33

I.

b , 0° . . .- . - • - * . . . * - • , * ° ' " . , , . . , . -

...

Second, JRS claims that the AMOS code will do integer

arithmetic and comparisons very quicklyp but any problem

involving primarily floating point arithmetic will achieve

minimal, if any increase in performance. This is because

the JRS HLL uses the same floating point acceleration

routines as the Fortran program. Portions of the floating

point algorithm that do not use the floating point

accelerator may execute faster when executed on the AIGS,

but the net gain will probably not be very large due to the

overhead of the floating point accelerator. During the

testing of the AMOS the truth of this claim by JRS will be

documented since there will be several tests to check the

floating point accelerator performance.

The JRS HLL is set up to support only integer and

floating point data structures. No character data

structure is available and therefore applications using

characters are not considered feasible. Arrays of integers

and floating point numbers are possible but the lack of a

character data structure will limit some applications or at

least make them very difficult to do.

If the algorithm includes I/O then the algorithm must

be rewritten to eliminate the I/O from the portion of the

algorithm to be coded in JRS HLL since the HLL does not

include any I/0 statements. The I/O can normally be moved

into the Fortran program that will call the WCS program.

Besides providing an I/O function, the Fortran program will

34

set up any data structures needed for the program. This is

really no more than a minor Inconvenience, but it does

complicate the use of the system.

Several other restrictions are listed in the AMOS

manual and repeated below.

1) Combined maximum of fourteen arrays and compiler

temporary variables.

2) Maximum of twenty DO-loops nested at any one time.

3) Maximum of five hundred symbols may be defined in a

program.

These restrictions will not, in general, eliminate

applications but they are restrictions based on the

implementation of the system on the VAX 11/780. These

restrictions are important because they point out some of

the machine dependencies that exist even when an attempt is

made to remain machine independent.

The final limitation of the JRS AMOS is a simple

observation. One of the main motivations for having an

AMOS is to allow for portability of the microcode.

Presently, this system is only implemented on the VAX

11/780. Therefore, a current, yet hopefully temporary

limitation is that the AMOS has not been programmed to

generate microcode for any other machines. This limitation

will result in eliminating many of the advantages of the

AMOS if it is not corrected.

35

'.A.

Assuming the application algorithm can be coded around

these limitations, the user should be able to achieve

better throughput by using the AM S. A goal of this

project is to make it easier for a user to determine if a

potential application will benefit from the use of the

AMOS.

E. PERFORMANCE EVALUATION METHODOLOGY

The performance evaluation was conducted to determine

the throughput possible using the AMOS. There are many

techniques available for doing performance evaluations

including hand timing, formula methods, instruction mixes,

and benchmarks, each having individual advantages and

disadvantages. The method used for this evaluation must be

capable of comparing two different programs and of giving

accurate results. Therefore a collection, or benchmark of

programs was defined with each program representing a

different possible application for the AMOS.

This kernel of programs was carefully developed to

contain the characteristics of the many possible algorithms

FL which might be run on the system. This is a very important

step for the validation of the results. If the proper

program characteristics are not tested, the results ill be

invalid. By categorizing the algorithms according to

application it is possible to specify what applications

will benefit by use of the AMOS.

36

After defining a kernel of program and coding them in

both Fortran and the JRS HLL, the program were run and the

results compared. Besides comparing execution time, other

factors previously discussed in this chapter were

considered. Ease of programming, system reliability, and

the compatibility of the application problem with the AMGS

were also considered.

One important question is how much better a manual

microprogrammer could do. The purpose of using the AMOS is

to achieve increased throughput without using a large

amount of programming time as would be required with the

manual method. Even though manual microprogramming is

costly due to development time, it is considered the

standard and the results of the performance evaluation

should be compared against the standard. By comparing all

three execution times, Fortran, JRS microcode, and hand

written (actually hand compacted) microcode, it will be

possible to identify the best applications and possibly

determine methods for making the slower applications

faster.

F. BACKGROUND SYNOPSIS

Since the main factors affecting the AMGS have been

reviewed, the next step is to determine the kernel of

programs to be tested. These programs must be

representative of the applications that might be used on

37

k2X -- F-.. * -

the AMOS. The purpose of defining this kernel is to attain

general results that will give an AMOS user an idea as to

the effectiveness of a specific application. The next

chapter will discuss the applications to be tested and the

programs used to test those applications.

38

IIIo PROGRAM GENERATION

There arm many limitations that must be considered when

choosing the proper benchmark for a system. The benchmark

must take into consideration the AMOS limitations

enumerated in the previous section and insure that the

results are not biased by those limitations. Limitations

such as the WCS size and the existence of only integer and

real data structures have a major effect on the

applications possible when using the AMES. With these

limitations in mind, it is possible to define some

applications that can use the AMOS. One common computer

application that will definitely not have increased

throughput due to AMOS use is I/O intensive applications.

The HLL was designed without I/O capability because

microcode implementations do not increase the throughput

for I/O intensive applications. However there are several

applications for which the AMES should theoretically

provide increased throughput.

The applications tested in this study are grouped into

four basic areas. These areas are:

1) Integer mathematics

2) Floating point mathematics

3) Sorting and Searching (Comparisons)

4) Bit manipulations

39

. ..-- . t C . . .- . . .-.....

There are several subcategories in the four basic areas. A

discussion of the subcategories follows.

Mathematically intensive applications that do

calculations within the limits of the AM8S are prime

candidates for the system. There are several different

types of mathematical calculations that should be

considered. Integer arithmetic must be considered

separately from floating point arithmetic due to the

different methods used for doing the calculations. Integer

addition/subtraction is handled internally by the AMSS, but

the floating point accelerator (FPA) on the VAX computer is

used for floating point calculations and integer

multiplications. This call by the AMOS to the FPA results

in a significant amount of overhead for each call. When a

Fortran program calls the FPA there is also some overhead,

but since Fortran translates to machine code and machine

code calls to the FPA involve less overhead than AMS

calls, the net result is slower execution time for the AMOS

code than for Fortran code during floating point

operations. This extra overhead in the AMOS is due to a

requirement to save the state of the microprogram prior to

executing the floating point operation. The result is a

net loss of throughput when doing floating point

calculations or integer multiplication on the AMOS.

Several types of calculations are possible when doing

integer and floating point calculations. Division,

40

multiplication, addition, and subtraction are different

arithmetic operations and the increase in throughput may be

different for each type of calculation. As much as

possible, this project will categorize the different

calculations and show the percentage of increase possible

for each category, however, in the interest of reducing the

total number of tests we will combine tests that are very

similar. Since addition and subtraction take the same

amount of time in microprogrammed processors, they will be

tested together. Multiplication and division are not

implemented similarly and will not be tested together. In

fact, since division can usually be implemented as

reciprocal multiplication, division will not be tested.

Integer exponentiation is normally accomplished by a series

of multiplications and therefore ill be considered a part

of the multiplication test.

Another major application of the AMOS is sorting and

searching. Since sorting and searching both include

comparisons of bit patterns, they may be considered

together in one broad category. The major difference is

that sorting usually includes moving of data or moving the

pointers to the data, while searching simply involves

comparing until the desired data is found.

ane final category that is directly applicable to the

NRL problem is bit manipulation. This category includes

the comparing, shifting, and replacement of bits or fields

41

• " ..'..'..',,. , .'., ' ,. ., ;..', ~ ,'.'..'..:S.*.*....-.-, ,..,,., .''..** 2,,;.,',, - -,, . . ', -~' 5,' S,,, .*'...

-= * . . -

9

of bits within a word. This category may be an excellent

application of the AMOS due to the bit manipulating

commands that are built into the JR8 HLL such as the shift,

swap, and mask functions. Fortran has the ability to do

the bit manipulations, but the functions are provided

through library calls which tend to be slower than direct

language implementation constructs.

The next section of this chapter is an explanation of

each test and the basic area it is designed to test. The

explanation of the results of each test is included in

Chapter Five. Table 3-1 lists the four basic areas and the

tests that cover each area.

Table 3-1: Specific Tests

Intecer Math Floatina Point Math

1. Do Loop 1. Chebyshev Cosine
2. While Loop 2. Fast Fourier Transform
3. Summation
4. Factorial

Sortina/Searchina Bit Manioulations

1. Bubble Sort 1. Bit Manipulation
2. Sieve of Eratosthenes 2. Bit Reversal
3. Quicker Sort
4. Binary Search

The simplest test was designed using the loop

structures. The WHILE loop and the DO loop provide a

method for testing addition or multiplication and comparing

the results directly with the Fortran equivalent. The

42

-r-.s V" W r-r .

simplest test is a WHILE loop that only increments the

loop counter. This test can be done as many times as the

user desires and it also can be nested to any desired level

to test the effect of nesting. The basic area being

checked in this test is the addition and comparison

required each time a loop Is completed. This comparison is

required to determine the test condition for exiting the

loop. A DO loop is another version of the loop construct,

with the increment being automatic and the condition test a

part of the DO statement. By using these two tests it is

possible to document how much time is required to execute

the overhead steps in any loop. This overhead cost will be

used to analyze programs with loops.

The next two tests use the basic loop structure to

determine the summation of an integer or the factorial of

an integer. Each of these tests can then be used with the

results from the previous test to determine the amount of

time required to do either an integer multiplication or an

integer addition by simply subtracting out the loop

overhead.

Floating point multiplication is the subject of the

next test. By implementing a Chebyshev approximation for

the cosine of an angle and calculating many values, it is

possible to determine the amount of time spent doing

floating point multiplication for each system. There are

some floating point additions that will add overhead to the

43

................,...

test, but the effect of the additions should be minimal.

This test particularly reveals the overhead of calling the

floating point accelerator from the AM S. JRS

documentation states that since both Fortran and the AMGS

use the same FPA, there should be no speed gained by use of

the AMNS. If the overhead of calling the FPA from the

microcode is too high, then it will make the AMOS slower

than the Fortran. This is an important experiment since

the results will be a prime factor in determining if the

AMOS should be used for floating point applications.

There were three tests written to evaluate the ability

of the system to do comparisons. The first is a sort

algorithm called Quickersort written by R. S. Scowen. This

algorithm works by continually splitting the array of

values to be sorted into parts and sorting the parts using

the same method. The second algorithm is a method to

determine all of the prime numbers between two values.

This problem, called the Sieve of Eratosthenes, uses

additions, comparisons, and assignment statements to

determine the prime numbers in a specified range. This

algorithm will give an insight into how all three of these

items interact to affect the throughput of the AMBS. The

third test is a bubble sort that sorts an array of integers

into ascending order. By using a loop construct,

comparisons, and a simple assignment statement, this

algorithm is an excellent example of a well structured

44

* o*.

module that does comparisons and uses assignment

statements.

Another test algorithm is a Fast Fourier Transform

(FFT) written in two parts because the entire program would

not fit into the WCS. One part is a bit reversal program

that simply assigns elements of an array to different

locations in the array. The other part is the complex

multiplication plus a Chebyshev cosine and sine generation

routine for use in the FFT. The bit reversal is an

excellent comparison of assignment statements between the

two methods and therefore goes in the bit manipulation

category. The FFT complex multiplication is another

floating point multiplication and addition algorithm. By

using the results of these two algorithms, we gain an

example of a long algorithm that uses the entire WCS (the

FFT) plus an algorithm that is only concerned with moving

values around in memory (the bit reversal).

The final test is an algorithm to do bit manipulations

using the bit manipulating functions provided by both the

JRS HLL and the Fortran library. The algorithm takes an

array of integers and performs different operations on the

integers such as AND, OR, EXCLUSIVE OR, etc. These

operations were chosen directly from the example NRL source

code, so this test specifically tests the NRL application.

With the test programs now fully defined, the next step

is to describe the test runs and the timing mechanism used

45

,. . . - " . . '.k - '. ..'.- - . -- -'-" - . .'-. - . .-. - " . -".. - •- 1..

to perfoarm the tests. The interdependence of tests will be

discussed in the next chapter as well as the effect of

using different language features on the individual tests.

After discussing these effects the test results can be

' presented and analyzed.

i46

.9

-.

.

oO

, . o . , . O . - * . .- *-. • o . - o O , . ••a ..*.°- - o ,o • ° °, ° . . . ° . . .° o . a-a .-

IV. IESIM

The testing of the programs was done with the most

accurate tool available so that any error in the timing

mechanism would be minimized. That is why the timing

mechanism and its accuracy were so important to the results

of this study. Once the accuracy of the timing mechanism

was determined, the minimum length of the test was

specified to make the test length much longer than the

possible error. Besides the testing mechanism, there are

other aspects of program design that affect the execution

time of the resulting object code. Since this is primarily

a comparison between Fortran and the AMS both the factors

affecting the execution time of compiled Fortran code and

the factors affecting the AMGS were identified and

considered during the programming phase of the project.

The desire was to make the tests as equitable as possible

in the two different languages.

A. TIMING MECHANISM

The VMS system library provides a software mechanism

for timing blocks of code. There are no hardware monitors

available to time individual programs and hand timing is

very inaccurate in a virtual memory system. The only

method that is relatively accurate, easy to use, and can

;47

B -

account for the virtual memory mechanism is the system

library timing function. There are two ways to use this

library function and both methods display precision to the

nearest one-hundredth of a second. The system manual

claims that actually calling the system library timing

function is more accurate than using the SECNDS Fortran

language feature (which uses the system library function).

CRef. 11, p. C-303 Even though the claim of better

accuracy is not substantiated by any specific numbers in

the manual, the system library function was chosen for

these tests.

There is a certain amount of overhead as a result of

each library call and since this overhead cannot be

accurately measured, it results in inaccuracy which must be

minimized. To time a segment of code requires two calls to

the library routine with the code to be timed sandwiched

between the two calls. The first call starts the timing

and the second call records the time. To minimize the

impact of the overhead in each use of a library function,

the minimum time for the code segment execution must be

much longer than the overhead. For this study, we

determined by actually testing a series of timing calls

that the upper limit of the overhead for each library call

was less than .005 seconds. Therefore, we designed the

Fortran version (without common or subroutine) of each test

to last a minimum of two seconds. This means that the

o" • o 48
-°

" .: ' " " .".".". . . " ".",". . ? . - ." '. .",".".""-.:".'.-'"." "". .' "'" " "'- ,""""" . " ''. """ .'"..

overhead for the two library calls in that version is less

than one-half of one percent of the test length. All tests

lasted longer than one second except for one test (the

binary search microcode compacted version) and therefore

the possible error due to the timer is less than one

percent except in the one test that is shorter than one

second.

Because some of the algorithms being tested can be

accomplished very quickly (in less than 0.5 seconds) it is

important to increase the execution time. This was done by

repeating the algorithm several times .o insure that enough

time was spent in the algorithm to produce accurate

results. To accomplish this, the input data can not be

changed during the program iteration and all iterative

counters must be reinitialized on each iteration. These

extra instructions do add overhead to the test but the

overhead is the same in each version of the test and

therefore the impact was considered to be minimal.

When the timing mechanism is invoked it produces any of

five different values that are useful in analyzing the

amount of time spent in an algorithm. The first value

available is the elapsed time spent in the system, whether

executing or waiting. The second value is the total CPU

time that the algorithm being timed was executing. This is

the most important value since it displays the actual CPU

time the program required to execute. Next is the number

49

of buffered I/0 requests and the number of direct I/0

requests. These numbers are not important in this study

since no 1/O is being done during the timing periods. The

last available value is the total number of page faults

occurring during the timed period. This number is valuable

because it states how many times the job was interrupted

and waited for a new page of memory to be fetched. The

larger this value, the greater the chance for error because

the clock must be stopped and started for each page fault.

The fewer page faults and the closer the elapsed time is to

the CPU time, then the less chance of inaccuracies due to

timing errors.

B. LANGUAGE FEATURES AND THE EFFECT ON TIMING

Before looking at the effects of the language features

it is important to note that if a programmer does 'dumb'

things, almost any algorithm can be programmed

inefficiently in any language. It is a basic assumption

during these tests that the algorithms are not being

programmed poorly and every effort is made to use good,

solid algorithms. Also, since the same algorithm is being

programmed in both languages, any bad programming practices

will be present in both versions and therefore tend to

cancel each other out.

The next consideration is the effect of language

features on execution speed. In the JRS HLL, there are no

50

features that will affect execution time except for the

call to the FPA when doing floating point arithmetic.

Floating point arithmetic requires a separate algorithm

because of the data representation required. The data must

be represented in one word and that one word includes both

a mantissa and an exponent. The algorithm must separate

the mantissa and the exponent, perform the operation after

aligning the decimal point, and then store the mantissa and

exponent back into the single word of memory. Floating

point arithmetic is common in all block structured

arithmetic languages and therefore Fortran has the same

problem, but not to the same extent as the JRS HLL.

The Fortran language is not as simple as the JRS HLL

and therefore some of the Fortran language features affect

the execution speed of the program. Fortran has several

different data access and parameter passing modes that do

affect the execution time of a program. It is important to

design tests that show the effects of different uses of

these features on the execution time of the same algorithm.

Otherwise, the results of the tests will only be valid for

the language features being used in that specific test and

could not be generalized for any program in the testing

category.

Some of the language features of Fortran that affect

the execution time are common blocks, subroutines with

common blocks, and subroutines with parameters. Common

51

. 7'.................... <. :-

blocks affect the execution time of a program because the

blocks are placed in a specific location in memory which

results in more indexing and slower data access for each

item. If instead of using a common block the data is

simply declared in memory, there will be a shorter access

time for each data item and faster execution.

The use of subroutines adds overhead due to the linkage

conventions and activation record initialization that is

required. Each time a subroutine is called, the current

state (registers and program counter) must be saved in an

activation record to insure that the state can be

reinitialized when the subroutine is exited. When common

blocks are combined with the use of subroutines there is

both the overhead of the subroutine call and the overhead

of accessing the data items in the common data area. These

two added types of overhead result in increased execution

time when compared with code that does not use the

features. On the other hand, the features provide methods

of passing data that are not otherwise available.

Therefore the user must tradeoff modularity in design and

ease of passing data between subroutines for longer

execution times.

The use of subroutines with parameter passing results

in even more overhead because of the requirement to set up

the data area for the parameters, passing the parameter

upon subroutine call, and returning the new values of the

52

-o-

parameters upon subroutine termination. Again, this

language feature adds to the convenience and modularity of

the program, yet results in longer execution time.

It should be noted though that without common blocks or

parameter passing there is no way to pass data between

subroutines. Also, if a data area is large, parameter

passing may be very costly, even to the point of being

unusable. Another possibility is writing the program

without using subroutines or data passing mechanisms.

However this usually results in programs that are difficult

and expensive to read and maintain. Since this is

unacceptable for most software projects, most programs are

written using some, if not all of these features.

In order to document this tradeoff, all programs were

tested in each of the following categories.

1) Fortran without use of a common block or subroutine.

2) Fortran using a common block but no subroutine.

3) Fortran using a common block and a subroutine.

4) JRS HLL using a common block and a subroutine.

By testing each program using each of these methods, we can

identify the amount of time added by the use of each

language feature. The user can then weigh the use of the

JRS HLL depending upon what features are desired. The most

realistic comparison is between a Fortran program using

subrnutines with common blocks and the JRS HLL because the

JRS HLL requires the use of both a subroutine call and a

53

common block. Besides, most large Fortran programs are

written using subroutines and common blocks so that the

resulting program is modularized yet allows for easy data

access.

One other requirement was determined during the testing

due to the VM8 operating system being a virtual memory

system. When preliminary tests were made it was determined

that other users seemed to have an effect on the execution

time of the tests. Therefore the tests were made under

two different conditions. One condition was with the

system clear of any other users. The other condition was

with other users on the system. This was done to be able

to document the difference, if any difference existed, and

clear up the question about the effect of other users on

the timing of a program. Chapter Five has. a further

explanation of the timing mechanism accuracy analysis.

The main emphasis during the writing of the tests was

on making the programs equivalent. All versions of each

algorithm must do each step the same way so that the

comparison is fair yet the tests must be programmed as a

'normal' programmer would do it in that language. If a

program is written in a special way that is known to be

optimal for one of the languages then the comparison of

execution times would favor that language. However, if it

is natural to use the feature in that language then that

was the way it was done. One example of this policy is in

54

testing the cosine function. Since the VAX 11/780 VMS

operating system provides a cosine library functiong the

library cosine function was compared to the Chebyshev

approximation to see which method is faster. Thus both

methods (Chebyshev and the system library function) will

achieve approximately the saMe answer, however the

algorithm used to achieve the answer will be different.

This special case is done to measure the effect of not

having a trigonometric function procedure available in the

JRS HLL library. Included in this test is the resulting

inaccuracy of the Chebyshev approximation, the space used

to store the routine in the WCS, and the execution speed.

With the specification of the testing methods, testing

categories, and timing mechanisms, the next step is to

compare the results. A comparison of execution times of

each program in each category of testing was accomplished.

During the explanation of the comparison, an analysis of

the data and a summary of the results is given. This

analysis will allow us to specify which applications the

AMSS improves and which applications the AMBS does not

improve.

55

* o.*

- V. PERF C. PARISON

The results of the tests can now be analyzed and

compared since the factors affecting microprogramming and

the processes involved in testing have been reviewed. To

insure that the analysis is complete, the raw data is

presented first followed by an analysis of the results.

The analysis will first compare the effects of language

features on each of the tests and then compare the results

of the different types of tests (ie. while loop, do loop,

etc.). The final section of this chapter discusses the

validity of the tests and analyzes the error in the tests.

A. RAN DATA ANALYSIS

The raw data is given in Table 5-1. All tests were

programmed in the four categories explained in Chapter Four

but only five of the algorithms were hand compacted. The

times shown in Table 5-1 are the mean values of ten tests

of each algorithm without other users using the VAX 11/790.

The number in parenthesis in the table, if shown, is the

value that should be added or subtracted from the mean

value to define the 99% certainty range for the mean value.

If no number is shown in parenthesis, then the value is one

hundredth of a second. An explanation of how the range was

determined is given in the last section of this chapter.

56

.5 . . ' .. * * * *..- - - .

,','

Table 5-1: Test Results (in seconds)

NO COMMON COMMON COMMON HLL HAND
STRAIGHT STRAIGHT SUBROUTINE JRS OPTIMIZED

PROGRAM FORTRAN FORTRAN FORTRAN HLL MICROCODE
While Loop 11.11 18.18 20.20 11.12

Do Loop 7.07 10.10 12.12 10.12

Factorial 4.61 7.46(.02) 7.54 8.88 8.63

Summation 4.49 9.77(.02) 9.77(.01) 5.70 2.87

Cosine 5.09 6.17 6.24 8.62

Cosine(Lib) 8.72 9.43(. 14)

FFT 11.16(.02) 13.08(.02) 13.74(.03)17.37(.02)

Sieve 3.39 4.18 4.10(.02) 2.49

Binary Search 2.50 3.54 3.43 1.17 0.79

Bubble Sort 3.59(.03) 4.58(.03) 4.79(.03) 3.77(.02) 2.29

Quicker Sort 8.78(.04) 9.75 9.80(.02) 4.75 4.36

Bit Reversal 4.75(.02) 7.49 7.50 2.25

Bit Manip 8.40(.04) 8.53(.07) 8.41(.02) 2.98

Not all programs were hand compacted because the

compaction required special knowledge of VAX

microprogramming and also required a significant amount of

time. The tests to be compacted were chosen to insure that

a representative sample was taken from each of the

categories. Another criterion for choosing the tests for

compaction was to choose some tests which were faster in

Fortran and some tests that were faster in microcode to

compare the effect of compaction. The basic purpose was to

57

I-. :'. ,-." ..". --.) , " " ." .-. ' ' ' .. .' ..'' .- ."'' ' .' ..• ."." ' : ' ' .: '.
r-. .,"," ,"." ' °. ' _/ ' ,.."''',..,-\" '.\"' , ,""' .,. .". ,".,..,.. , -.'. ",..'. ..., .. ' .. '. ,. ..

see in general, how much better we could do with the

compaction without exerting a tremendous amount of effort.

That purpose was attained by compacting the five selected

programs.

When looking at the times from Table 5-1 in general,

some of the results were counter-intuitive because the

expected result is to have the microcoded version execute

faster. In many cases the Fortran versions were faster or

' as fast as the microcoded versions. This can be attributed

to three facts mentioned in earlier chapters. First, the

microcode that is generated from the HLL by this AMOS is

not compacted. Second, the Fortran compiler generates

highly optimized code. The third reason is that some of

the routines used as tests involve floating point

arithmetic or integer multiplication, both of which use the

floating point accelerator. The use of the floating point

accelerator results in increased overhead for microcode.

These three factors, separately or combined, resulted in

some cases where the Fortran outperformed the microcode.

B. EFFECTS OF LANGUAGE FEATURES ON THE TESTS

The different Fortran language features were tested to

isolate the effects of the different techniques for data

passing. The important point is that the tests were

programmed as a 'normal' programmer would program them. No

special attempts were made to make specific tests run well

. '-" 58

!.5

in either of the two languages. Since it was unlikely that

a determination could be made as to what the "normal'

programmer would do, the three different Fortran tests were

devised so that the user could determine which method was

needed for his/her application. Of course, if a programmer

chose the Fortran without subroutines or common data areas,

then he/she was giving up the use of some very important

software engineering techniques.

In general, the tests of the different Fortran language

features resulted in more speed with fewer features and

less speed with more features. The fastest Fortran

technique in all cases was the version that used no

subroutines and no common data structure. The use of

common data areas with and without subroutines resulted in

somewhat unexpected data. The expected results were for

the versions using common data without subroutines to run

faster than the version using common data areas with

subroutines. This occurred in most but not all of the

tests. In general, there was only a slight increase in

execution time when a subroutine with common was compared

with the same program with no subroutines but with common

data, which implies that the overhead of calling and

returning from a subroutine (without any parameters) is not

very significant. In fact, in most cases there was no

statistical difference (discussed in the last section of

this chapter) between the tests with subroutines and common

59

,-." ' *.*-,,..,' "*-.. ,, -. .. , ,.- .), . -,. , .. .% . . , , . ,

and the tests without subroutines but with common. One

possible explanation is that the variation in the length of

time to start and stop the timing mechanism is greater than

the length of time required to call and return from a

subroutine. Since there is only a single call in each

test, the results may not show any difference when the

subroutine is used.

The hand compaction of the JRS HLL microcode always

resulted in faster execution than the uncompacted JRS HLL

microcode. This is as expected since the hand compacted

code was derived from the JRS HLL microcode. In no case

were instructions expanded ("n" microinstructions encoded

into un+k" microinstructions, where k > 0) and therefore no

increase in execution speed for the hand compacted code was

expected. It should be realized that the method used for

generating the hand compacted microcode does not really

produce hand compacted microcode because the compaction was

done to an existing program. The microprogrammer did not

set up the problem according to his own liking. The

microprogrammer simply took the generated microcode and

compacted it using his knowledge of the VAX

microprogramming. If microoperations could be combined

with other microoperations to reduce the total number of

microinstructions, they were combined. The important point

to remember is that the microcode was machine generated and

hand compacted.

60

Another point that must be mentioned about the data

analysis in general is the overhead involved in the JRS HLL

microcode. The length of time required to make the call to

the microcode plus the overhead involved in the use of

common data is not documented anywhere and can not be

determined in this study because the timing mechanism is

not accurate enough. Therefore during the analysis of the

data, it is important to remember that when the JRS HLL

microcode is called there is a certain amount of overhead

in the call. This overhead is most likely more than the

overhead of a subroutine call in Fortran because the state

of the micromachine must be initialized. The other point

is that all data in the microcode is in a common data area

and therefore, as has been documented, requires extra time

to access. Probably the best comparison between Fortran

and JRS HLL is to use Fortran with common data and

subroutines because the overhead of the common data and the

subroutine calls approximately cancel out each other.

Therefore, it is possible to compare the actual speed of

each method rather than comparing the overhead involved in

each method.

The overhead involved in the subroutine call and the

common data area will not always be constant.. If there are

only a few data items being accessed in the subroutine then

all of the data values can be placed in registers which

reduces the access time. However, if an array or a large

61

..-..j

number of variables are being accessed then it will take

longer to get the data in and out because of the use of a

Nq common data area. The important point when looking at the

comparisons being made in the next few sections is that if

common data structures and subroutines are used in Fortran

(which is almost always done) then the execution speed will

not be as fast as the fastest Fortran test. If the

decision is made to not use the common data structures and

subroutines then the programmer will be giving up

modularity of design and other software engineering

techniques for faster execution.

C. COMPARISON OF TEST RESULTS

This section will compare the results of the Fortran

versions with the HLL versions. The comparison will be

done within the four basic areas defined in Chapter Three.

Each test algorithm is available in an appendix in both the

Fortran implementation and the JRS HLL implementation. The

Fortran version of the algorithms available in the

appendices is the version in a subroutine with a common

data structure. The algorithms have been placed in the

appendices according to the basic area that they are

testing. Table 5-2 lists which appendices contain which

individual tests. The algorithms have been removed from the

individual test harnesses, however an example harness

(Factorial Program) is available in Appendix E.

62

t
m
~o 2

.s S S .' A - . P 0

Table 5-2: Table of Tests in Appendices

Appendix A: Integer Mathematics

1. Do Loop
2. Whil Loop
3. Summation
4. Factorial

Appendix B: Floating Point Mathematics

1. Fast Fourier Transform
2. Chebyshev Cosine

Appendix C: Sorting/Searching

1. Binary Search
2. Quicker Sort
3. Sieve of Eratosthenes
4. Bubble Sort

Appendix D: Bit Manipulations

1. Bit Manipulation
2. Bit Reversal

1. Intecer Mathematics

The basic loops were included in the integer

mathematics category because all that occurs in the loop

construct is an increment and test until the condition is

met, at which time a jump out of the loop is executed.

This is very simple and uncomplicated so the expectation

was that the microcoded version would not be much better

than the Fortran version. In fact, the JRS HLL WHILE loop

was only as fast as the fastest Fortran version while the

fastest Fortran DO loop was much better than the JRS HLL DO

loop. The results imply that the Fortran code is highly

optimized.

63

Since each of the loop tests involves only one

variable, the common data area access time penalty can not

be blamed since the variable was stored in a register.

There is the overhead of calling the subroutine and setting

up the data registers however that alone should not cause

the microcode to be as slow or slower than Fortran. The

only logical answer is that the optimization and compaction

of the different codes has a large effect on the execution

speed. One other important point about the loops is that

in all cases the DO loop is faster than the WHILE loop.

This is most likely due to better optimization because the

looping variable is part of the loop construct while in the

WHILE construct the incrementing of the variable occurs

independently from the language construct.

The next test was the summation of an integer

value. This test measured how fast addition could be done,

however, since each summation could be done very quickly, a

loop construct. was set up to repeat the summation 10,000

times. The results were that the fastest Fortran version

was slightly faster than the JRS HLL version, even after

subtracting the overhead of the WHILE loop. This result

was not expected but can be explained as the result of lack

of code compaction because when the summation microcode was

compacted by hand, the execution speed became significantly

faster than the fastest Fortran version.

64

The final integer mathematics test is the factorial

program. The test was limited to a maximum input of 12

because 13! is beyond the limits of the storage capacity of

a four byte integer. Therefore, to make the test last long

enough for timing purposes, a loop was set up to calculate

the factorial 100,000 times prior to stopping.

The result of the factorial test validates the JRS

claim that integer multiplication is slow because of the

use of the FPA. After subtracting the overhead of the

loop, the JRS HLL is still twice as slow as the fastest

Fortran version. In fact, the slowest Fortran version,

using common data areas and a subroutine, is faster than

the JRS HLL microcode. Therefore, the AMGS should not be

used for integer multiplication intensive algorithms

because of the FPA overhead.

The JRS HLL did not result in any performance

improvements for any of the integer arithmetic tests

accomplished in this study. This was due either to a lack

of microcode compaction or to the use of the FPA for

integer multiplication.

2. Floating Point Mathematics

There were two algorithms for testing the floating

point mathematics applications, the Chebyshev Cosine

routine and the Fast Fourier Transform (FFT). Both

algorithms substantiated the JRS claim that floating point

calculations would not do well in microcode. The execution

65

-7 K.,

speed of the FFT HLL version was about twice as long as the

fastest Fortran version. The other Fortran versions were

of course slower than the fast version due to the use of

common and a subroutine call.

The Chebyshev Cosine routine gave the same type of

results as were attained for the FFT, a slow down of about

80%, caused by the FPA. However, the interesting part of

this test is in comparing the speeds of the Chebyshev

Cosine with the speed of the Cosine Library function. The

overhead of the Library Function call is very high because

even the JRS HLL (which is the slowest Chebyshev version)

is faster than the Library Function test. Therefore it is

justifiable to say that while the use of the HLL for doing

trigonometric computations is not a great improvement, this

test does demonstrate that the commonly used features of a

language can be costly and that the microcode does give

slightly better performance than the Library Function.

Both tests in this basic area support the JRS claim

that floating point arithmetic will not be helped when

coded in JRS microcode. Since that point has been well

documented, we will now look at the sorting and searching

tests to see what kind of results they produce.

.3. Sortina and Searchina

There were four tests accomplished in this area and

three of the four gave results that were favorable for the

JRS HLL. The one test where the JRS HLL ended up being

..

.. '. - '. . - - - , . ., . '. , -. - ' -. . ,' . - . . . ,, : .. , " , . . ., ., . ., .- , ,

slightly slower was the bubble sort algorithm. There was

no looping mechanism to subtract away from the problem and.

the algorithm consists of only assignment statements and

comparisons. Therefore there is no reason to explain the

slow performance except for the lack of compaction of the

microcode.

The Sieve of Eratosthenes program test resulted in

the JRS HLL version running about 25% quicker than the

fastest Fortran version. This result was expected since

the microcode is able to do comparisons rather quickly.

One other interesting point became apparent during this

test. Since the tests are supposed to be written as a

'normal' programmer would write them, it is sometimes

easier to use a DO loop rather than a WHILE loop or vice

versa. However, when trying to get code to execute

quickly, it is obvious that the Fortran DO loop is much

faster than the Fortran WHILE loop as shown in Table 5-1.

On the other hand, the JRS HLL DO loop is not nearly as

fast as the Fortran DO loop and only slightly faster than

the JRS HLL WHILE loop. Therefore, a program is dependent

upon the language construct chosen by the individual

programmer and if a DO loop is used in the Fortran version

while a WHILE loop is used in the JRS HLL version, there

will be a greater difference in results.

To avoid this discrepancy in results (after it was

noticed in the initial results), the Sieve algorithm was

67

r, " o °o " - . - " , • ° . o ° ". .. , . ' ." ' o ." . .°• . . . " ° ' . , ° "" - .

." . .. '° " ... ° " o..° " ' ." " * q- , . . - ' ' . . o ' ' ° -.
.

.. . o . ' ' . o

rewritten in both languages using DO loops because a

definite iteration (the DO loop function) was what was

needed in the algorithm. The change in speed of the

algorithms due to the use of the DO loop was not

tremendous. However, this test does demonstrate the effect

of using different language constructs plus the use of

'normal' programming techniques and constructs.

The Quicker Sort algorithm demonstrated the speed

of the microcode as was expected. Since only comparisons,

additions, and subtractions with one multiply are used,

this algorithm is very fast. The Binary Search algorithm

results ended up with the JRS HLL being twice as fast as

the fastest Fortran version. Again, this was expected

because of the use of comparisons during most of the

algorithm. This algorithm produced the second best

performance increase by the JRS HLL microcode of all of the

tests. This was probably due to the fact that the

algorithm has only one DO loop, one WHILE loop, and the

rest of the algorithm is made up of if-then constructs

which are simple comparisons.

The sorting and searching tests were a good

application of the JRS HLL microcode. For the most part,

the microcode resulted in faster execution speed than the

corresponding Fortran program, however, the increase was

never much more than twice as fast.

68

-.. . • " "'....'." , ." ..'. -.-. -'o .*.".".-' ."*.'.. .,. '' \jp:*:..: . '. ..

4. Bit Manioulations

The last basic area of the tests is the bit

manipulation area. Two tests were accomplished in this

area and both gave positive results for the microcode

version. The bit reversal program ended up with a large

increase in execution speed. The program was simply used

to switch items in an array. No comparing was needed since

the program switched the items in the array according to a

convolution scheme. This test demonstrates the speed of

the assignment statement in the microcode.

The bit manipulation program also resulted in

faster execution for the JRS HLL than for the fastest

Fortran version. The main reason for this fast execution

is that the Fortran version uses system library routines

which are slow to call and execute. Therefore, it is

actually the slowness of the Fortran library routine rather

than the speed of the microcode that gives the increased

throughput. The important point is that the microcode does

improve upon the execution speed of the corresponding

Fortran code and therefore the AMOS gives a performance

increase for these kinds of operations. It is also

important to note that this program was simply a series of

calls to the microcode or Fortran routines that perform the

functions. No other operations besides the driving DO loop

were needed in the algorithm and therefore it was a very

accurate test of the actual speed of the tested code.

69

* - *.,.-.'.,....... *-....

D. TEST ERROR ANALYSIS

Because this testing was done an a virtual memory

system, there was a possibility of error due to the timing

mechanism being switched on and off many times. The

intention of the tests were to give the user an accurate

estimate of how much speed would be gained by using the

AMOS. To insure that the estimate is as accurate as

possible, a computation was made to determine the

confidence interval for the mean. Also, to determine if

the virtual memory system was affecting the results, a test

was performed that allows us to state, with a specified

amount of confidence, whether the virtual memory system

affects the results.

Since we made several runs of each test, we were able

to determine a mean execution time for each test and a

standard deviation for each test. However it is important

to do a statistical analysis to determine how confident we

are of these results. The question of confidence was

answered by using the Student T distribution (because of

the small sample size) to find the interval within "hich

the mean will fall with the specified amount of confidence.

For these tests, a confidence of 99% "as desired. The

following formula was used to determine the range of the

mean execution time for 99% confidence. The value for 't'

is dependent on the level of confidence desired and was

70

.: ' - - ,- - - - - . . -...-. .~ , ' .' • - * * " % V % "." " "

read from a Student T distribution chart. CRef. 12: p. 4883

'X" is the ean of the sample, IS' is the sample standard

deviation, and In' is the total number in the population.

X - t(S / n) < u < X + t(S / n)

To find the effect of the virtual memory system

required performing each test under two different

conditions. First, each test was made with other users on

the system. This could be anywhere from one other user to

twenty users. Next, each test was performed with all other

users locked out of the system and the entire computer

running only the system support programs and the tests for

this project. Then a hypothesis, called the null

hypothesis (Hi) was assumed. The null hypothesis was that

both samples came from the same population. To test the

null hypothesis we used the following formula, where Xl and

X2 are means, S1 and S2 are standard deviations, and n1 and

n2 are sample sizes (in this test, 10).

t - (Xl - X2) / SORT((S1/nl + S2/n2))

If the calculated It (from above) >- "t' (from the

chart based on 99% certainty), then the null hypothesis can

be rejected. In other words, the samples do not come from

the same population which means that the number of users on

the system does affect the results. If the value 't' < 't'

(from the chart) then they could be from the same

population and the other users on the system may not affect

the results. [Ref. 12: pp. 214 - 2213

71

- - ' :Q--_KK4§>7 **

The results of the first confidence test mentioned

above were enumerated in Table 5-1 with data taken on the

VAX 11/780 with all other users locked out of the system.

In general, the results were very accurate in that they

gave a small range in which the anticipated results would

fall. The null hypothesis test gave mixed results. It was

hoped that we would be able to state that the tests with

other users an the system would be from a different sample

set than the tests without other users. However, that was

not the case in general. In most situations, the tests

with other users on the system simply showed a higher mean

but the possible range for 99% certainty included most or

all of the range for the test without other users.

Therefore, in the second test the null hypothesis could not

be refuted in most cases. However, it does appear that

other users on the system do affect the timing mechanism

but only because they increase the standard deviation of

the tests and thereby widen the range of values for 99%

certainty.

72

VI.

The purpose of this project was to evaluate the

performance of the JRS AMM. This has been accomplished by

comparing the performance of the JRS HLL microcode with

Fortran code on the VAX 11/780. The testing has produced

some unexpected results and has shed light on several

interesting points. The first point being that microcode

will not always result in faster execution of an algorithm.

During the testing it became apparent that this was due

mainly to two causes. One reason is that for the speed of

microcode to be fully utilized, the microcode must be

properly compacted. The other is that the use of the FPA

by the microcode results in slightly degraded performance.

The second point is the effect of the different

language features upon the execution speed of the Fortran

code. When the fastest Fortran code was compared with the

microcode there were several cases where the Fortran was

much faster than the microcode. However, when the slowest

Fortran code was compared with the HLL microcode the

microcode was faster. This was true in all cases except

when the FPA was required. Testing the effects of the

language features revealed an important point since the use

of the features allows a programmer to use software

engineering techniques. When these features are not used

73

• -p V % %..- ,-,-- -'*** *. V ' V % , % V

it is very difficult for a programmer to use software

engineering techniques such as modularity and information

hiding. Without these techniques the code may run fast but

-" it is usually very difficult to develop and always hard to

maintain. Therefore, a tradeoff must be made between the

convenience and security of the language features or the

speed advantage possible without the features.

A. CONCLUSIONS FROM THE DATA ANALYSIS

The analysis of the data allows for some conclusions to

be drawn about the use of the AMSS for specific

applications. The conclusions are grouped in terms of the

four general areas defined in Chapter Four rather than

about individual tests so that a user may make a decision

based upon a general category of application rather than a

specific example program. Specific program results will be

mentioned if the results of that test vary significantly

from the other tests in the specific area being discussed.

The integer mathematics application resulted in no

advantage from the use of the AMGS. This is most likely

due to the lack of compaction of the microcode. This

conclusion is justified because when the summation

program's microcode was compacted and subsequently

executed, the results were a significant increase in

execution speed. Therefore, it is assumed that if the code

. was properly compacted the execution speed would be

74

.1

F°

improved. The only test in the integer mathematics

category that would not be greatly improved by the

compaction Is the factorial test. This is due to the use

of the FPA for Integer multiplication.

The floating point mathematics area also turned out not

to be a good application for the AMS. This was expected

and the probability that this would happen is documented in

the JRS HLL manual. The difference in the magnitude of the

execution speeds is interesting because the JRS HLL runs

about 602 slower than the fastest Fortran version.

The sorting and searching application area demonstrated

promising results for the AMOS. In three of the four tests

the AMOS version was significantly faster than the fastest

Fortran version. In one test (the bubble sort), the

Fortran was faster than the AMOS but this is probably due

to a lack of compaction rather than due to a lack of

applicability to the AMOS. From the results of these four

tests, it is justifiable to say that sorting and searching

r are both good application areas for using the AMOS.

However, it should be noted that at this point in the AMGS

development, the difference in execution speeds is not as

good as it could be with compacted microcode.

The bit manipulation area also resulted in favorable

results for the AMES. In fact, this was the best

applications area of the JRS HLL because both tests ended

up more than doubling the speed of the Fortran code. Of

75

71i-A-T- ,-AT X -A A-- : j - - - -V - "- ' a 7 . -- . .- .Ah A -J .- -- .3; -r- - - - -. -- -.r FR

courses one of the tests was slow in the Fortran version

because of the use of library functions, however, since

that was the only way to easily perform that function in

Fortran, that was the way it was programmed.

Now that we have defined the areas where improvement is

possible the question remains about whether the AMOS should

be used by NRL? The answer to this must be based on more

factors than simply execution speed. We must also consider

system cost, ease of use, and actual improvement possible.

Since the improvement is at the best two to three times

better than the Fortran code, the cost in money and

programming effort can not be justified by the possible

gain. When the system is improved to include microcode

compaction with a resultant increase in performance, then

the AMOS cost may be justified. Somewhere in the area of

an order of magnitude increase in speed is necessary before

the cost of the system (money and programming effort) is

justified.

The AMS did prove capable of producing microcode that

is as fast or slightly faster than the compiled Fortran

code. Therefore, if an application exists that will use a

microcoded machine, the AMS is capable of producing a

large amount of 'acceptable' microcode. The AMGS can

produce the microcode very quickly in comparison to

conventional methods. Also, the AtIMS can produce large

amounts of microcode at much less expense than is possible

76

with hand microcoding. The AMOS therefore provides a

mechanism for producing 'acceptable' microcode efficiently

and inexpensively.

One other possible use of the AMOS is to produce

microcode that can be hand compacted. If the

microprogrammers are available, the HLL can be used to

produce an uncompacted microprogram and then the

microprogrammers can be used to compact the HLL microcode.

This technique produced very good results during the study

and the cost in microprogrammer's time is much less than

writing a complete microprogram from scratch.

B. FUTURE RESEARCH POSSIBILITIES

There are several areas that can be researched as a

continuation of this work. Some areas relate directly with

this type of microcode generating system but other areas

are points that became obvious during the study yet had to

be ignored to keep the scope of the thesis within reason.

One area of research is to evaluate the next version of the

JRS AMGS. The next version is now available and has

microcode compaction which should result in much better run

time results. Also, the revision has more language

constructs that more closely parallel the constructs

available in the more modern block structured languages.

With these revisions, it should make the system easier to

use and give better results.

77

V.

" • --. .,
- . * ° ' - . -0 . - • . . ° - . - . .- .- . ° - .o o . ° ° • ° • , ° , •.. . . -

Since one of the suggested advantages of the AM6S is

portability of the JRS HLL microcode, it is important for

this system to be implemented on another machine so that

the work involved in doing such a job can be documented.

The possibility of implementing the AMGS on another machine

is already a stated goal, but until it is done, a proper

testing of both implementations can not be made. The

comparison of the results of the tests would document the

portability of the system and demonstrate the ease with

which the machine transition could be made. It would also

be advantageous to have another language such as Fortran or

Pascal used as the source code instead of the JRS HLL.

This would make the AMBS accessible to more people

resulting in a better chance of the system becoming more

widely used.

The cost of using different language features in

Fortran was interesting even though it was a sidelight of

the study. Further study could be done as to the exact

cost of using a subroutine with or without parameters.

Also, the actual cost of using a common data area could be

documented so that a user knows how much the use of such a

feature is costing. Of course this kind of testing would

be system dependent, but if that system used these language

constructs for a significant amount of work, the results

could be very helpful in making decisions during future

programming efforts.

78

--. *j -o - -'7 7-.;- -Ow

The final suggestion for further research has to do

with defining the application areas. It would be very

helpful if there were some guidelines as to what

applications use what operations. These guidelines would

be very helpful during future system performance evaluation

efforts.

79

.,F ":-o , - h ;, " " ",- - - " " " " ' " " -- . '

LIST OF REFERENCES

1. Sheraga, R. 3. and 8eiser, J. L., "Experiments in
Automatic Microcode Generation", IEEE Transactions
on Comouters, June 1983, pp. 557 - 569.

2. Wilkes, M. V., "The Best Way to Design an Automatic
Calculating Machine", Advances in
Microorooramming, Artech House, 1983, pp. 58 - 60.

3. Rauscher, T. 6. and Adams P. M., "Microprogramming: A
Tutorial and Survey of Recent Developments", IEEE
Transactions on Computers, January 1980, pp. 2 -
19.

4. Booch, 6., Software Engineering with ADA,
Benjamin/Cummings, 1983.

5. Davidson, S., "High Level Microprogramming - Current
Usage, Future Prospects", Micro 16, October
1983, pp. 193 - 200.

6. Geiser, 3. L., "On Horizontally Microprogrammed
Microarchitecture Description Techniques", IEEE
Transactions on Software Encineering, September
1982, pp. 513 - 525.

7. Gries, D., Compiler Construction for Digital
Compurs, Wiley, 1972.

8. Davidson, S., Landskov, D., Shriver, B. D., and
Mallett P. W., "Some Experiments in Local Microcode
Compaction for Horizontal Machines", IEEE
Transactions on Computers, July 1981, pp. 460-
477.

9. Fisher, J. A., "Trace Scheduling: A Technique for
Global Microcode Compaction", IEEE Transactions on
Comtrs, July 1981, pp. 478 - 490.

10. Isoda, S., Kobayashi, Y., and Ishida, T., "Global
Compaction of Horizontal Microprograms Based on the
Generalized Data Dependency Graph", IEEE
Transactions on Computers, October 1983, pp. 922-
933.

80

11. VAX-11 Fortran Lanouaas Ref erence Manual,
Digital Equipment Corporation, No. AA-D034C-TE, April
1992.

12. Miller, I. anid Freund, J. E., Probability and
Statistics for Engineers, Prentice-Hall, 1972.

61

APPE4~DIX A

INTEGER 'ArHMATICS ALGORITHM1S

c rHE DO L9JOP IN A FiRTRAN StI8ROtJTTNE
C'I' IS THE LOOP vA:ZTAr3LE 'VHILE 'K

*C IS THE VTiAL NJ:A3E:? OF T!ES THIE L:)!JP
C N~ILL B3E EXFCtITED.

S'PfROJ f I 4E DOL0)P

F D"0)-0O

\THIS P' OGRAMI IS A)O LOOP IRTTTE4J TN JRS HLL\

PR03RA~M OnLOOP;

DO I = r O K;

E M)Do;

S TO;

EJOf. O ~F ')GLOOP\

C THIS IS THE NHILE LOOP IN FORTRAN
C cIU,'4r -IOLDS THE TOTAL 'IUIBER OF TVA~ES

C THE LUJOP NlILL 4E EXECUTED. ZERU H3LDS
TPfE VALUE 0.

a, SlIf3:?0TtNE ALJLELOOP

P IrEGEP CiJU'Iv ZERO

Cr-JM'ON /IdCS/ fCO.JNTr ZERJ

09~ 'WTLE (CflhJ'\iT Gcr. ZE-70)

COUN~T C!nU'J I

E'JD I0)

E r ,IF MILEL30P

h 'I

\THIS IS THEf AadTLE LOOP INJ JR5 HLL

PROGRAM A-ILELOJP;

- INTrEGER COU4T, ZEPO;

00 i4H[LE (COONT ,GT. ZERO);

COJNJf COUJNT 1;

E'IDDO;

STOD;

CTHIS TS THE SUM1 AL30RITHVI IN FORTRAN
: C3UNr' IS THE NJN 3ER OF TIMES THIE SUMMATION aILL
C. F compurEn. 'VALJE' IS THE 'NUAEI TO BE SU4MED.
C TFMPI IS A ST014AGE LOCATION FOR 'VALUE'. 'TOTAL'
:IS JHF VAL-JE OF THS SUJAMATION. 'ZERO' HOLIPS THE
C V/ALUF n,

SJ8RO!JTT'JE SUMf

rNTEGER TOTAL, VAL1JEv TEMP, COUJ1, ZEQU

COmMO /nCS/ TOI AL, VALJE, TEmP, CO"ANT, ZERO

ZER:J = 0

DO t*JHrLE (COUNT .GI. ZE70

: mi~irTALTZE THE VkRTMeLF:S FOR THIE S:PA RnlJTINE

kfOjrj = CU.JNT - 1
V4~LUE =TFO1P
TOTAL = ZERO

Z THI 13 TH-E A'CTuAL S3'-- P:G JF U-IE VALIJE

)O ,YNILE CVALUE .Gf. ZEROl)
TOTAL =T)TAL + t O
vILiJE =vALJE I

ElAD 01

SOF StJV;

\ 5q4%AT!ON ALGORITH4 IN JRS 'HLL

ITEGER r9TAL, VALJFi, 1Em4P# COU'JT, ZERO;

00 PHILF (Cr)U\IT .Gf. ZEQ0);

COUJNT =COJNT - I.;
vALiF. =TEA~P;
TOTAL =0;

D)O AHILE (V/ALUE *GT. ZERnO8
T'JTAL =TZJIAL + VALJE;
VALUE zVA~LUE -1.*

E NDDO;

Ei"

STOp1

.c*~.-**t) '-.

C THE FACTORIAL SU3ROUTINE INI FORTAN
C *COUNT' DETERMINES HOW MANY TIMES THE FACTORIAL
C 3F 'VALUE' MILL BE DETERMINJED, 'rOTAL' HOLDS
C THE ANSWER AND IS INMIALIZED TO 1. 'rEMP,
C -nLDS THE FACTORIAL VALUE TO BE)ETERMINED
C FOR REJSE.

SIJBROUJTI4E FAC

INTEGER TOTAL, VALOIE, TE,4P, COLI'JT, ZERO, ONE
COi. ON IiCS/ TOTAL, VALJE, TEIAP, COUNT, ZERil, O.TE

D, 0 .HILE (COU IT .GT. 7EQO)

:OLINI = COJNT - 1
S-VALUE = TEA1P

TOTAL = 1NE

)(; H ILE (vA!.'JE .GT. ZFR')
1TAL = f3TAL * VfLLIE

VALIE VALIE -
.. ~E '.. I0

E'ID O OF FAC

.M

,%,.. 9,., -,. j.j....., ...,.. __ _ ... ;. % *. ... -....,..-...... , ... , ..-... ,...............,..... ,.... ,,. ,-

Ta sr -A e -wdr-.r r W.7 PC.' 47; r Vr C .rr - r W. W

THIE FACTORIAL PROGRAM4 IN J4S HLL\

PROGRAM FACTORIAL;

I\JTEGER TOTAL, VIALUEo TEM PP COU'4T, ZERO, 1;

DO sNHILE (COU\IY GTI. ZERO);

CO.JiT = CUJNT - 1;
VALUE= EP
r1)rAL = 1;

10J NHILE (VALtIE .GT. ZERO);
TnTL= f3TL *VALJE;

ViLAJ= VALIUE -1;

E i 0 f) ;

* sru);

EAI.;

............

I-1 -%,I -:.-- I -

APPENDIX 8

FLOATIM3 POlINT 'AATHEM4ArICS ALGORITHMS

SIBR1u I I.'JE FF1

FAST FOUJRIER TRANSFORM

x - CO'vPL.E' 4RRAY Y(2**Ai)

- JW)E;Z 3F FF1', NI=2A**.

RA3ED) JPjN A! FFT FIPST r)EVEL.9PEDI H~Y ST(;!.ALS
$CfIE-JCE Cl:P,,'.)ATitN FfOR POr)JECT SALESCLFRK.

IQST TRANC4il RY LCOR C~ LAiJR'/ICr, LIS'.
\,1O1F lED BY LT Pl H PTO'11G, LUS l

'ST ,V.E F0101--14i T QA iSFO- *4

DJ) ?0 L=t,M-

LtE 1 LFO/2
i) =A 1.0

IF (F''i~sE *,;r.('/.) r-F
HAS? =PT -IS

Z P14A5E

I PiASE? *' A tiSFL3)

IF (tIA13, -,r. (pl/;).fl) 1-4E C

:ALV;:IL.PFE ST!

-~~~F Ww~. ar -____________V_____ _1

IF (PHASE .1. (PI/2.0))THEA~
PHASE2 = *12.0 -PHASE

ELSE
PHASE2 P1 (3.0 * P1/?.0 -PHASE)

E'JOIF

SI'JX= 0.99995795 -(0.4i9?0405 *PHASE2 * PtiASE?)
Slx= SlivX +(0.03Q6267/4 * PH-ASE2 P HASE2

1 PHASE2 k PHASE2)

DF.CP4ATI9%1 IN~ TIiF

DO 20 J=1,LEI
LUC 1.0 l=J,Ni, LEO
IP=I *LLI

rwE.AL =xRPAL(T) + XqEAL(1D)

12_EA =XRE4L(i) - x9EAL(TP)
T21miAG =X[%MAG(1) - XA(P

VHE~AL(fP) = 12PEIL * iJEAL - rTr*AC, *

x1v;AG(IP) =T?RELL urj AG iV"r *iI7

XPEAL(I = r4EAL

10 C 0,,1 f 1 'F

)REAL = -IEAL A (IG S i

.jT 'AA(= WqE L -';'X I , ii .iIX

20 C IlJ I~ I E
L) C F1 I l'i

F '10

.- '...

* W-- . -Z 7 0:-- 7 1 7.. - Z7;77 -. 7- 7 7- - - 7 77

PROGRAm4 FF1;

FAST FO'JRIE'Q TRAN~SFORM - A\4GS '4LL VERSIONJ

1I'4TEGER 1,J,MNL,LEO,LEIP,OJ '4T,K,NJV,NM,N-111,P;

R~EAL IREAL,j)IAA3,PHASECOSX,Sl14X,TREAL,TIIMAG?,
1 T2REAL,T2IMAG;
REAL TMP,P1,RI , 2R,

REAL ARk XRCAL.(tl96) ,XTVAr(400b);

\)OES mIr Dot A[T REV/ERSAL

DA <0'41I 1 1 0 A;
2

F" C CTE T H C LO'f 0 jPO T I 'A ES3 Ft PF f 1 11JlG P 0R P wSE 1;

:?EPL LC '11TH Iq'LTijL- FXPA1510'! 0,117 TJ .'ju FXPU-JE.21

LFO =1I
-rj'Wu'iT = I P)] (+-L)

LtI') = *- ,)

P -1 5 P r/;:L 1A I(I FI)

IF (?H'43E *'.T. T~/.O)1IE

TAP PI - PHASE;

ENDDO
ELSE

TvO PIA,3E;

COSX = RI - (P2 * Trip • TAP) +

(R3 * Trip * TAP * VAP *AP

IF (K AS F *GT. (PI2.0)1 -E
',;

C93X = -:0Sx;

CALCJLArE sI \

IF F PHASE .LT. (PI/2.0)) TiE\j

TvP = P!/P.0 - P J.SF

E N!-"") 0
FL3E

r,'!, = P- (w3 * pi/2. n . - f

-I JX l - (, * T'P k TF)1-

(3 T" , T AD T A ") ;

DFC ,I".' T Ii T - Ti ',,F

) IJ= T) LE1;

fi I:.-I+ L LI On., .1 Y;

T LI.L = v,,'FfL(1) + xQEAL(IPJ;

I [".r; + K.'A(;(Ti.) * ? IPil

I I A- t-(. FAL(I) - L(IP

T 'I 1 A I 'A(i A 'i~; [P

1 -'[," .('; 1L E L))

I , A;(j0) (TQAL * JI'.A-A,;) +
1 (r ['iA

T ?QFL(A L:J I f;

X1A" G(I) : L4["r:;

-,

- . <:/ . -

- . " " " ' . , . 2 , " ." " - -.. " - - - - . " - ' - . .

,.',r ,L,,., ,',. ., ., : ,•.:, ,... _ -.._. -..,.:,,..,..,.> ...,- ..,.,... .. ,.. ,,..,.... .,.

UJREAL =('JPEAL * CriSY (UIMAG *(S'x)

rJI'A z (URFAL * (-SI-jN)) t(UTMACG c* x

E ND ~ DO;

E rvi) o)0

E Nj 0 0

S TOP;
E r)~fl

. 44

..

C THIS IS THE FORT4A\1 CHEHYSHEV COSIAJE ROUTINE.
CTHE COSINE IF ALL I'lTEG;ER ANGLES F:R9\ 0 TO
C180 DEG-REES 1S COMP~UTED. THE COSINIE OF E-ACH
0ANGLE IS COMPUTE) OK TIAES FOR T1~IIG

C 'UP~ISES.

S~jBqOjTI'4E COSI\JE

INTEGER I ,J,K,L,i%',N%

REAL PI, rFMP,Rl,R2,R3rLI'i1T,FANS

Di' AFIILF (J .LE. K)

D,) %HILE (I .LE. 181)

I F (I 1~.E 00) THE1Fl

E L S E

FV\13(1)

IF (I .-IT. 00) F i() F ~ t(Ii -

= +1

1P: AIyj 13

RD-RI59 671 PERFORMRNCE EVALUATION OF THE JRS RUTOMRTIC MICROCODE 2/2
GENERRTING SYSTEM(U) NAVRL POSTGRADURTE SCHOOL MONTEREY
CR T J NEWTON JUN 85

UNCLRSSIFIED F/G 9/2 Nb

EEEEEEEEEEliE
I flfflflI....fflflf

1.0.

I.ME

11.25 1.41.

MICAOCOPY RESOLUTION TEST CHART
ialIAhJ squh(A& OF STAP#ANDRS - 163 - A

\TIS SJBRO!JTINE IS WRirTEN 14 JRS ILL AND CALCULATES THE
COSINE OF T4E ANGLES FROM L TO 4i DEGREES. THE DFGREES
ARE FIRST CONVERTE) TO RADIANS AND THEN THFf CHnivOYSHEV
&PPROXIMATIO4 13 USED FIND) T41E VNLJE OF THE COSINE.
THE LOO)P IS EXECJTED K TIMES rl ALLOq FOR T[m[NG OF THE
'iROCEflJRE.

DR)GPA'A COSI"JE;

REAL PIoTEAP,RI ,42,l3,FACT0R:
4E L AR.RAY IIANS(180);

)o J 1 13 K; \TOTJP TO CJN f 0L ilE '1U~it3R OIF I I 'ES

THE COSI'AES A9E CALCULATE')

00fl = L To Nt; \, LOnP 71 COJrPOL ,tHAY A PJLES

TO CALCULATE TIE C!)SV4E FOQ

IF (I L.E. QUi) THEN

TEMP UFLc3AT(l) *Pl)/FACI'IP)

ELSE

FF'MP ((FL',AT(.!-Ij * PT)/F4tT'Jlf),

NAN'j(T) z RI- (k2*TE~t*E'VP) +

\ClqE:T THE SfG~i OF THE A S4.

tF (I .:;I. on) THEA

t4F. (I (*A'(I)

49

APPE'JOTX C

SOWTI'VG/SEARC41NG ALGORITHM4S

*C THIS SJHROTTNE Ln12KS FOR EACH ITEA 1Pd THE
Z ARRAY 'KEYS' STARTING s~Ili THE FIRIT ITEm AND

Co NDINIG 11P 11TH TIE LAST f TEm. EACH4 TI'AE A14
TT0% ITFJN HE 1N')Ex oF THE DESIRED LIE'A

C Is crnMPAqEr .NITH T6E INDEX OF THE FOUJr) ITFIA
c To 1*'ISJRE THAT TAE C!)RPECT ITEM4 t!AS F011:40).

C[F A ; 4 T;APRr)PER ITEA TS FOLJ"ID THEN THE COWN~T
C)F RRDRS IS 1~C~~ t IE YONF.

Sk&3-wiJTT4E 13114ARY SFAPCH

IMJEGER 0)IRj-gN$ILToSIZEI,KEYS,K,UPPER,LOnFR,1,J,

* ~CJ',l',!0 /.qC3/ KEvS I)00oo ,KOci,-T, ?ES(JLr, sZ
1 Lii),ER,I,J,FE WR3RS,K

C LLYIP TWOi~C~ol EVER ELFAE\jT IF THE A4A44
AND L011k Fr1l EACH ELFU/EN~T J\JCE.

D. J =.1,^17

'QESJLT LSJ
J13PFR SIZE..

IF C ThSJLT ol-1. k(FY5(L1*4rq)) v4Fi

,. F TtOQ

01S P-tF L (FSI T - .G o* iE.Y)) 1

*I =(J0Fl + LJ.'F7R + 1)12
S[~F(tS~JL *LT. *EyS(I)) ItrF;'N

IPIPF:4=

L~F IF (CJL[.L;,T. <E~YSCI)) [1

I F'

PES11T 0 -
F TRF

ENDIF
IF (UPPER .LT. LO'aER T HEN

F = *TRUE,
EL SE

KOUNT a KOUkNT$1
EN)IF

EN D D0
E 91)1F

IF (I OJ.J) ERRORS = ER~RORS +I

E 1) D I

Eft)lD OF 3IjA Y SEAQC'4 3UB~f)JJI'JE

\ 31MAR~Y SEARC-i PR3GIA4 oRITTEN IN JRS tILL
\ mHEN 14E. RESULT 13 ASSTGNEI A NEGATIVE \
\ VALUE# THERE IS AN EPROR 1.1 THE RESJLTS

PROGRAM4 SSEARCH;
INTEGER ARRAY KEYS(10000);
1,ATEGER KlU-NI,RESllL rpsi ZE I (PPEqLloiEQ,

I ,J, FLA3, ERiRORSF K;

DL) K z TO SIZEl;

KOLJ'JT = 0;
RESALT zKY(
LIPPER SIZEI;

LilJ.NER =1;
FLAG 0;
IF (RESLT .LT. IEYS(L71'IlR)) THE~N

ELSE RS =-

IF (PFSI-ILr CT. Kcf~S~tIPl'ER)) I0FE'
PESLILT: -2

EL3E
)I AlHTLE (FLAG .E,, 0);

= JPPER + L9."ER + ~r)
IF(RES ILT .LT. IKEYSMI) ToEi

tJPPE4 1-1
E LSE

IF (RESJLT *rT. iEYS(I)) r,'E'

FLSF
IF U4ESULV .E-0. JkEYS(I)) iiE

FLA-'; 1

4ES.ILT -5

E 'V)) I;
IF (,F'LF .1-T. L~lk'F- ["t-1'.

FLAG,4 I
EL SF'

[FK I UA~ I) + I

I~~~ ~ .'f I)I F

E 1.0oj;

9 TI)P;

E....................... .a

~ - ... * - -*: ~ * -9

THIS IS THE QUICK SORT ALGORITH4 I4 FORTRAN
'4' iS THE ARRAY HJLDING TIE ITEMS TO BE SORTED

C ALL INTEGERS INt 'A' ARE GENERATED BY THE HARNESS
C OROGRAM4

SUB:(JT I'dE SORT

~INTEGER I,M,J,P,T,Ua,K,01,X,N,Lr,Ut,A

t 4(50000)

T!"[TALIZE IHE VARTARLES A40) cnNsrATrs

>00 IF (J - I .T. 1) THEN
= (J # 1)/2

T A(P)
" .m(P) = AM1

I J1
~O300 K = I t 1,1J

IF (A(6) oGT. T) TriFN
')tI ?01 'H < -

" IF (A(,Qj) .Lr. T) r-4E.'
i)f = A(K)

r.(,1) = I

Q I 1
ilia 120

"Z EJPIF

C \'T I JF
I = ,K - I
GUT(I tin

I-" To ',)I 1F

in f) :o \I I W,,,,,

IF (2", GT. [J) THEJ
LIC') =

%:' T(') : ,, - 1

ELSE
~~LT('-) = , + I

fir 0/() : J
. J I

EN I F

, 1

..

,,-::A ::,: .Y, ,..-,--... .,- v........ ,......--........ -...-. . --... ,' '

GOTO 200)
ELSE

IF (T oGE, J) THFN
GOTl 160

ELSE
IF (A(M) °GT. A(J)) THEN

X z A(M)

A) = A(J)
A(J) = X

160 z4~-
IF (4 .3T. 0) T4iE,

I LT(m)
J JT(A)
Coro 200

ENDIF
IN~ I F

E ' I) T F

Eli) 0 so~r

li

3R3G9Am SORT;

\THIS P40GRA4 3RTS THE ELE'4E'jTS OF AN ARRAY INTO
ASCE.'IDING flQDEQ. THE 4AErH3D USED) TS THE "OUICKERSORT"

.4 ALGORITN~i OF R.S. SCflAEN, ALGORIrHm 271o CAC'4, VO)L.
Or NUM91ER lip OCTOIER 1965. THIS VERSION AiAS COPIL)

1 ~ ~ wROM TIE JRS tILL M4ANIIAL FOR THE AmGS SYSTEM*.

THE ALSORITr1m hU4KS RY cONTI04UALLY SPLITTING THlE A: PAY
TNTO PARTS SUCH THAT ALL ELEVIENTS IF O.mE PART ARE LESS
THAN ALL ELE'E'JrS 3F THE Or'4FR, vir?1 A rHIRf) PAR~T
IN THE mTDflLE CO'JS[SII',G OF A S11JGLE ELEvENr.

THE_ AR~RAY TO 6E. 1304TEl) IS ORE-SET TA $A@ Atli) Tr4E
IF ELEm~ENTS Ii4 TIE ARRAY IS SET IN '.ON FXIT, THlE
--LEAENTs flF ARRAY 'A' ARE SORTED.

T'JTEGEW AdAY' L~f 14),uT(1 i),-1(q00nflO

j

I Oo: IF (J-1 G1 .I) IT-4Ei

P
*r A()-
*A(P.) A l)

IF (A(K).-,T.r) THEJ

i) K A(;

G.11I 1 121
E "0 ' it

E' !i')U;

* G1 Itin;

1 (?

140: AMI = :)
AMO z T;
TF (2*Q GT,. 1+J) THIEN

DO;

EN~fnO
ELSE

DO;
LI(A) -- Q+I;
UTM~v : J;
j =

GJ3Ti 100;
E 'J'))()

ELSE IF E'.EJ Ii~GlVO lbO
L 3E

DiX;

IF (A(.G .A(J) T-9E'l

I0 = L ();

j = T();

G.)T1 i100;

F)U l);

F ')tJ

C STEVE PRfGRA~4 IN FJRTRAN IV
CCOPIED FROM4 RY1E 'AGAZINEo JAN 83
C THE STEVE nF ERATOSTHEINES ALGORITHM~ IDENTIFIES
: THE PRIME *JUAHIERS WRJM 3 1.1 4J. IN THIS CASE

lf b#381. TA4E P;ImES ARE STOR~ED IN
C lN APRAY NAAED 113RIMES' FOR VERIFICATTON
I F rTE ALGORIir,4m 1' THE4 HARNESS 3'Rt)GRA'

Sl9IiRO~J1INE SIEVEStJ$

1,rTFGER 1,oo3%TI~#PTF#JR'E
LOJGICAL FLAGS

Cilml 0O'1 /STORE/ T,J,K,CU IfT, lTER,0RUvE,N,PRI'WIS3(19fl)

1) 192 ITER =1,,2(

IF(.\.,Of. FLAGS([)) Gfnl 191

=~~ I + '

IF 0,\ ST1. A1t91) t3QTf IllI

UL) 160) 1 = k, 0jt9t, P'?1'/
FLAGS(J PALSE.

1 9? C (04 T I 'IIJF

E OF S1EVE9JN

I (h

\-ILL VERSIONI OF 14E SIEVE OF ERAdOST4$ENES
THE PRO)GRAM TDENT19IES THE PRI4E NJ4iRERS 8FTNdEEN

2RIG.RAI SIEVE;

INTEGER I,J,K,CIU'JT,L,PWT\ E,ZERO,1, tENi;

INTEGER~ RQAY FL4GS(9191l, P4E5S(1900);

u) L =I TO TEN;

j

0(1 1 TT '
FLAGS(IJ 1;

Wi 1 1 T) 'A;
TP (FLA'3U i) .). I)T4\

PP L 'E T + I 1

J = 1;

FLA36,UK) =0;

E N' D;

s T)r';

0 ~5

C 3UtdRLE SONT IN F)RIRAN
C THE INTEGERS IN AR4AY 'A' ARE S309YED INTO
CASCENJDING tWER 3Y CONTINUALLY AJVTNI THE
C'NEXT' LARGEST ITEA1 TO ITS PROPEP USITPnN
T N TIE nRDERING. TH-E ALGORITH-14 IS P-1PRuvED
3Y C14ECKTMG EACHI TIAlE THPOJGH TH4E s3'~r TO
SEE IF A'14Y EXC4A\JGES HAVE 3EEN M'ADE. TF

:'JU'eE ARE MADE THEN TOIE PROGORAMI TENAI1'JATES.

S03ROTI I E 3tIq8LE

I E.GFR I,PN,HANG,TE'WI,A
C,)*A%0\J /'NCS/ I, i, 4CwArjG, FEM~P, AC(Ido")

XCH.NVIr, T-ZUE.

Oil jH1LE(X(C4i\J; .EQ. frRJJE.)

Ir (ACIl) L,.~ A(1+1l)) THEII-

AM~ A(1+)
1(1I) =(ITE,)

EE'

E'! 1 IF) I YJ

\THIS IS THE qIJ98LE SORT IN' JRS HLL
ARRAY 'A' HOLDS THE INTEGERS TO 9E SORTEr).\

2R3GRA'A 3060;

INrECE4 1,XCHA\JG, TEMP;
INTEGER ARRAY 'M0000O);

)f) -.'V1LE (XCHAJG.NF.fl);

D) 1=1 TO \J;
IF (~f.I~~~lTHEN

TE MP AM
A(T) A(I+1);

A(hI1) =rEAP;

I 7

...... . .. J. S********........ -

APPENIDIX D

RIT 4ANIPILATION ALGORIT$'4S

* U~3T *-A4ULAT19N P4f)GRAM1 INJ FORTRANJ
ARRAY 'A' IULDS THE PREGE*4ERAtrED VALUES TO

C 3E 4ANIPJLATED. '4' HIlLDS THE 'JJMIER? OF
C tIIES THE MANIPULATION 4'ILL OCCJR FOR TtIVNG

*C 2URPOSES.

StJRQOWIT INE :I TM41P r

IljTrGER 1,N,ik3T,A

C0'Mi40N~ /ICS/ t,\I,Rl)T,A(l10000)

0;) 4 00 1 = I

M) = J1 FICA(),3l)

'30) J!411 (A 7I)

E it) -ICF f~ %~A I I

\3!rM4ANIPJLATIOVl DR3GRAA IN JQS rILL. ARRAY 'A,
4OLOS THE VALUES T3 FIE MANIPOLATED. N IS THE
TOTAL NJU'BER OF TIAES THE. ITE4S NILL BE
4ANIPLDLATED. 'I' IS THlE L90PING VARIAIRLE,

PROGR~AM 61II14

INTEGER I,NiR3T;
PTJEGER ARRAY W00000OG);

109 1 1 10 N';

A (I Iz %(I) *A"Jf. AMI);

AMJ ACT() *XU2, ('14A5Kq310~));

A(l) afICA))4; vA1(1s0

AMT Z r AM 0R. A(T);

AM) = qL.'Io3)

* srom;

10

SUJBROUTINE 91TREV

C - COM4PLEX ARRAY X(2**4i)

c - %U'4REiR OF POINT3

c RA3LP UPIN' A4J FFT FIRST DEVELOPED) BY SIGNALS
c SCIENCE CflQP3RATIO!N FOR PR~OJECT SALESCLERK4.

FI'QST TWAN13C4I!3Ef 9Yv LCDR CV LA'IRVICt(, lUS'-

- '.MODIFIED B~Y Lt M HARTO%4G, fjS'!

COmPLEX X('IO9b),T

RFA4RINGE AqRtiY- 41T P~~vERSAL

~'Wi 2:t* /2
N 1 " I . I

JZ1

LF(U.3E.J) f;o U) 2
I=:~AJ

v-1 TO 25

Li) Jj'

op

PROGRAM4 5TTPEVf

31T REVERSAL FIR FFT - AmGS I4LL VERSIUNI

3ASE UP04~ AN FFT F[RST DEVELOPFD IRY SIGN4ALS
SCIENCE CORP. F3R PROJECT SALFSCLERK.
TRANSLATED IATO LiLL FOR [HE AdCS 9Y LT 'A HARTONG

NIV 2v , N'41 *P;

REAL 'REAL,JI vA~,PH-ASECOSX,STNX, TREALTLMAf',o

REAL ROAY XREAL(q09b) ,Xrv-AG(!10O4b);

\ REPFAr iu ITMES FOlR TT'AING PURPO)SFS\

D.). L =I III 30;

-D- <0 1\ T 1

\L'ITIALIZE THE nL01'.STA'3tS

IV~? 41~2;

IF ?1G.J ~F yrt5;

T I At; XIAJ

x i'~Ar;(J) XP()

?b:JF (;F) THE' GTCJ; O

ell ZN 4?-

A& WA 4ry~ 1% Irv . *e.

4

SOTO 26;

30:J=J.K;
E NDDO;

EDOO; \ END OF LOOP L \

sToP;
* Eli).

tA

112

S.

APPE4JOIX E

SA 'PLE HAINESS SETUJP

PR~OGRAM FACTOR~aL

C THIS IS THE FACT3RTAL PRrOGWA40 FOlRTR04 VERSION
C' A" I'.iTGER IS READ At-in [HlE FACTORIAL OF THAT
C INrEGE4 IS PRI'MTED. Tt4E FACTORIAL OF THAT

%JJ'AIER IS CALCJLAT!I) 100.000 TIMES i3EFORE M E~T'J
'RI;4TE) FJ:Z TIA1\G P:JRDISES.

i'JFEGFR TITAL, VALE TEMP, ClU\JTr ZE14U,
I rT4jER, 4AMrf)LE, IRET, TNST

1?jEG~FR rlI;Es, C, V, t, AVS, t1flE

C(1V4vM1\ /-iCS/ TOTAL, VALAJ, 1EY'P, Cfjli-T, ZFIRO, 0\4

10 FIW',4AT(/,' ENTE4 AN] L'!1EGER 3Fi'oEENJ I AND1?'/
20 FflI&AAYUS rHE FAZT-itdAL F @,[;?, l13 4, 1Q)
50 F1Rvft(/,9 FA:T!hiTAL IUST*jr FP1TRV! SY3NmFI'fTV vIT-4

I clroofl /)
40) FiJ&',A r(/0 FAT'I k]AL 'J53ING IRS -'LL 'ijl H C0i)vU'/)

30 FiJRAAI(/o rAC T)RIAL 'ISIN- S3TiA IGHF FORTRAN1 C~lf-W

70 FJ:'vAT(r2)
U0 F04\A I(/P Ic I.81w)IIAL f3f'4C S I ATG,4t FOtiTRAN

I v T~ IOJI I'."O /

Z RAf vM-iT FftCT'PrAL IC flFTrRAV'#E

REA)(9,70I IF-Is'

T'jIlTALI/F- TiE ClVll1A-jTS

C:;ij\.i Z TIr JS ! jj,''4 'IF tr v! s v, f xi'CLirF LOOP
ZFR') 0

C2 i

......

IF (,NOT, LIRS1IITTIMER(I1ANDLE)) CALL ERR

DO PdHILE (C .GT, 0)

C C - I

V: T

ANJS a I

00 NAiILE (v .GT. 0)

ANS = A'JS *V

E~EN 00~

IF (. GT. LT' S~tAw(,14F~t~-!L) CALL E44

.P IFF(6,2bf) TL A S[I~N 0 .

THI9 13 tHE- iTqAIG-if FoRrR.V\s CODF k/EPSIJ'j ITtH Ctv4"U

IF (..'0i~. LlT\ITl4PH~IL- CAL L ERR

-'1 'JlIT.F (C30-41 *;T * 0)
C) -J (7)0,41 - I
V4%L,'E TE=
flTAL N

I JFAL = I"[rAL V ALIJE
v AL JE zv at tE -I

~Li r) J

IF .~r Lr4;SrATT IVF7H.r,I 1AEN,,.44'd)LP I CALL Q

IJ4II J(6,1,0) FLQAI'T I T'%FR)/1O0.)

1 ILJ

C THIS PART IS A SJBOUUTINE CALL 14 FORTRrAN :ITH CIP-'Ui

CnUNdT x TIMES

TOT7AL z flN

IF (.IjOT, LIHXIJITrIN4ER(HAN1r)LF)) CALL ERR

CALL FAC

IF (.NOT. LI tStArTJMER(2,T'MEi#HtqJ)LE)) CALL EVH

~4RIIF(b#20) (E-tOP rOTAL
JRI TE (6,60) FLJAT (1 4ER)/I1000

THIS11 PAPT "S3ES JRS HLL hAtr-l CUW41W

IOTAL Z 0'11
cnu~jr = BimEs

IF (.40T. L~tTI4IrT1Tv1FI(HAo.LE)) C~ALL E4P

CALL XFCC(TO1AL, IP~rp INST)

IF (*'iOT, LlefSTArJ[14ER(2,Tl4Eiq,44i)LF)) CALL t4

v,4rv (b6C) FLJAT ni AFkf)/IO0.o-

E 'I

TtiF FATf'R IA'L 'tiJIIE 'F.' ,

C 10/'10"r~ TO)TAL, VAL 1E, TE',P, CJ '14, IIA i, 1,

: 2jq = r0JNT - I
VJALUE z TEAP

filIAL=

)0 *44. usJF.;.7~)

TOTAL z T3rAL * VALUE

VALUE = VALUE I

END DO

END DO

END ! UF SU4M

'1

0J

11

F ACTORIAL PROGRA4 IN JRS IfLL

PROGRAM FACTORIA~L;

-r INTEGER TOTAL, VALUE, IEA4PP COUN'TP ZERO, T;

DO NHILE (CJUVT crY. ZERO);

COJNT COWN - 1;
VALUE =TEmP;
rUTAL=I;

DU aP~lLE (VALOIF .GT. ZERl);
TnTAL 2 TrAL VAL:JE:
ViLJE = V.%LtI 1;

E I0r-c';

E D

117

* C SUBROUTINJE ERR TS JSEI) FOR SIGNALIN~G ERRORS FROM
C TMI. T!IING IECI4A415M.

Sti8QUJUTT'JE ERR

vyRITE(b. 102)
102 F3RvAT (I P4OPLEm WTIH THE LIBRARY CALL')

EN UF ERR

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
onterey, California 93943-5100

3. LtCol Alan A. Ross 2
Code 52Rs
Naval Postgraduate School
Monterey, California 93943-5100

4. Mr. Andrew J. Fox
Code 7752
U. S. Naval Research Laboratory
4555 Overlook Ave. S.W.
Washington, D.C. 20375

5. Mr. Erwin H. Warshawsky
202 W. Lincoln Ave.
Orange, California 92665

6. Capt Terry J. Newton 2
1734 Alexander Circle
Pueblo, Colorado 81001

7. Lt Mark Hartong
P. 0. Box 3249
Vallejo, California 94590-9998

8. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

9. Professor H. H. Loomis
Code 62Lm
Naval Postgraduate School
Monterey, California 93943-5100

119

10. Computer Technology Programs
Code 37
Naval Postgraduate School
Montereyg California 93943-5100

120

I

FILMED

11-85

DTIC

